Preventa XCS safety switches

Catalogue

Appropriate safety

Abstract

Ingenious and innovative, Preventa safety solutions assure you of maximum protection with the XCS range of dedicated switches for controlling the safe opening and interlocking of guards and covers in your installations.

>A complete range for all applications:

- For a wide range of machinery guards, covers and doors
- For all types of environments
- A solution tailored to the levels of safety required

>A Schneider Electric package offer:

- Sensors designed to be integrated into Preventa safety solutions
- Present in over 190 countries and 5000 sales outlets, Schneider Electric assures you of an offer available worldwide through its network of distributors

Contents

Generalies	p 6 to 23
Miniature safety limit switches XCSM	p 24 to 27
Compact safety limit switches XCS P et XCS D	p 28 to 33
Safety switches XCS PL, XCS TL, XCS PR et XCS TR	p 34 to 37
Safety switches XCS A, XCS B, XCS C, XCS MP, XCS PA, XCS TA	p 38 to 51
Safety switches with interlocking by solenoid XCS LE et XCS LF	p 52 to 67
Coded magnetic switches XCS DMC, DMP et DMR	p 68 to 79
Coded magnetic system XCS DM3 et DM4	p 80 to 87
Safety modules Preventa XPS	p 88 to 101

Make the most of your energy

>Appropriate solutions

The latest operating safety standards propose new methods of risk management right from the design stage, making use of concepts such as Safety Integrity Levels (SIL) and Performance Levels (PL).
Schneider Electric safety solutions enable you to optimise the cost of your installations according to the level of safety required, while assuring you of perfect interoperability.

PL=b (category 1) / SIL 1

Architecture 1
1 XCSPA + 1 LC1D + 2 XB4 (start and stop)

1 XCSLF (or series mounting) +
XPSAC + 2 LC1D + 1 XB4 start

+ XPSVNE (for zero speed detection)

Architecture 4

several XCSDM in series with 1 XPSDM + ABL8 + CAD32 (or LC1D)

Architecture 6
XCSDM3... + ABL8 + LC1D

Used with Preventa modules, controllers or safety PLCs and TeSys motor starter solutions, XCS safety switches offer levels of access protection up to PLe, category 4, SIL3, according to standards requirements in force EN ISO 13849-1 and EN/IEC 62061.

>Preventa XCS guides your choice

Whatever your activity sector, your type of machine or your automated function, Schneider Electric offers you a complete range of safety switches to meet your protection requirements for functional safety.

100\%
Adaptable to your environment

	Mechanical 5 different actuators head	Lever or hinge operated

None defeatability

Product type and preferred machine architecture by safety level (PL/SIL)

According to EN 1088 / ISO 14119

PL=b (category 1) / SIL1
PL=d (category 3) / SIL2
PL=e (category 4) / SLL3

Plastic body, secured mounting adjustment and cabling access by special screws (XCSM and XCSD also)

XCSPR - XCSTR: Stainless steel spindle operator, for direct axis control

> If actuator is protected from manual operation

By coding
Reinforced by Hall effect technology

Architecture 1	\square	-	-	-
Architecture 2			Architecture 4	Architecture 6
Architecture 3			Architecture 5	Architecture 7
XCSPA XCSTA: Compact plastic body up to 3 contact XCSMP: Miniature key switch with cable output	-	XCSLE: Plastic body, slim dimensions, up to six contacts for high inertia machines	-	-

XCSA: Metal body for protection against accidental shocks for heavy door control	XCSB XCSC: Metal body release by pushbotton or by key	XCSLF: Metal body, 2300 N reinforced locking for inertia machines in harsh environments	XCSDMP - XCSDMC compact XCSDMR cylindrical Various formats, ideal for dust and liquid environments	XCSDM3 Cat3 / SIL2/PL=d XCSDM4 Cat4 / SIL3/ PI=e Embedded safety control. No need of additional safety monitoring Perfect for small

	XPS AC, XPS VNE	XPS DMB, XPS DME
XPS AXE, XPS MP, XPS MC		XPS DMB, XPS DME

Selection guide
Safety detection solutions
Safety switches Preventa XCS

EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 n 14
EN/IEC 60204-1, EN/ISO 14119
UL, CSA

$30 \times 50 \times 16$	$31 \times 34 \times 89$
Centres: 20	Centres: $20 / 22$

Plunger or rotary head
Head adjustable in 15° steps throughout 360°
Linear (plunger) or rotary (lever) actuation.

NC contacts with positive opening operation	
$\begin{array}{ll}2 \text { NC + } 1 \text { NO break before make, slow break } \\ 2 \text { NC }+1 \text { NO and } 2 \text { NC }+2 \text { NO snap action }\end{array}$	$\begin{array}{l}2 \text { NC + } 1 \text { NO break before make, slow break or } \\ \text { snap action }\end{array}$

$$
2 N C+1 \text { NO and } 2 N C+2 \text { NO snap action snap action }
$$

IP 66, IP 67 and IP 68	IP 66 and IP 67
$-25 \ldots+70^{\circ} \mathrm{C}$	Tapped entry for Pg 13.5, ISO M20 cable gland or tapped $1 / 2 "$ NPT
-	-
L= 1, 2 or 5 m	XCS P
XCS M	28
24	

Preventa XCS lever or spindle operated switches

Protection of operators by stopping the machine when the operating lever (attached to hinged machine guard) is displaced by 5°.
All light industrial machines fitted with hinged or rotary protective covers with small opening radius.
Compact format
Plastic with 1 or 2 cable entries

Plastic, double insulated

2 types of lever: straight or elbowed (flush with rear of switch) 3 lever positions: to left, centred or to right

2 types of spindle: length 30 mm or 80 mm
EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 n ¹4, JIS C4520
EN/IEC 60204-1, EN/ISO 14119
UL, CSA, BG

$30 \times 87.5 \times 30$	$52 \times 108.4 \times 30$	$30 \times 96 \times 30$	$52 \times 117 \times 30$
Centres: $20 / 22$	Centres: $20 / 22$ or 40.3	Centres: $20 / 22$	Centres: $20 / 22$ or 40.3
Turret head: 4 positions Rotary actuation (lever)		Turret head: 4 positions Rotary actuation (spindle)	

Protection of operators by stopping the machine when the guard hinge rotates through 5°.
All light industrial machines fitted with hinged access doors.

Slow break safety contacts with positive opening operation
NC contacts open when lever or spindle displaced by more then 5°

1 NC + 1 NO break before make 2 NC 1 NC + 2 NO break before make 2 NC + 1 NO break before make	$1 \mathrm{NC}+2 \mathrm{NO}$ break before make $2 \mathrm{NC}+1$ NO break before make 3 NC	$1 \mathrm{NC}+1$ NO break before make 2 NC $1 \mathrm{NC}+2 \mathrm{NO}$ break before make $2 \mathrm{NC}+1$ NO break before make	$1 \mathrm{NC}+2 \mathrm{NO}$ break before make $2 \mathrm{NC}+1$ NO break before make 3 NC

IP 67

$-25 \ldots+70^{\circ} \mathrm{C}$

1 tapped entry for Pg 11, ISO M16 cable gland or tapped $1 / 2^{\prime \prime}$ NPT	2 tapped entries for Pg 11, ISO M16 cable gland or tapped 1/2" NPT	1 tapped entry for Pg 11, ISO M16 cable gland or tapped $1 / 2^{\prime \prime}$ NPT	2 tapped entries for Pg 11, ISO M16 cable gland or tapped $1 / 2^{\prime \prime}$ NPT
-	-	-	-
XCS PL			
34	XCS TL	XCS PR	XCS TR

Selection guide (continued)
Safety detection solutions Safety switches Preventa XCS

Preventa XCS key operated switches

Protection of operators by stopping the machine when the actuator (attached to machine guard) is withdrawn from the head of the switch. All light industrial machines, with quick rundown time (1).

Miniature format	Compact format
Plastic, pre-cabled	Plastic with 1 or 2 cable entries

Plastic with 1 or $\mathbf{2}$ cable entries

Degree of protection	
Ambient air temperature	For operation
Connection	Screw terminals (cable entry via cable gland)
	Pre-cabled

Type reference

Pages

Plastic

Without locking of actuator.	Without locking of actuator. Optional accessory: guard retaining device.

EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 n 14 and JIS C4520
EN/IEC 60204-1, EN/ISO 14119

cULus, BG	UL, CSA	
$30 \times 87 \times 15$	$30 \times 93.5 \times 30$	$52 \times 114.5 \times 30$
Centres: 20/22	Centres: 20/22	Centres: 20/22 or 40.3
Fixed head: 2 positions for insertion of actuator.	Turret head: 8 positions for insertion of actuator.	

Safety contacts actuated by the actuator.
Slow break and positive opening operation.

1 NC + 1 NO break before make 2 NC $2 \mathrm{NC}+1$ NO break before make 3 NC	1 NC + 1 NO slow break contacts, break before make or make before break, or snap action 2 NC slow break or snap action 2 NC +1 NO slow break contacts, break before make, or snap action 1 NC + 2 NO slow break contacts, break before make, or snap action	1 NC + 2 NO break before make 2 NC + 1 NO break before make 3 NC
IP 67		
$-25 . . .+70^{\circ} \mathrm{C}$		
-	Tapped entry for Pg 11, ISO M16 cable gland or tapped 1/2" NPT	
$\mathrm{L}=2,5$ or 10 m	-	-
XCS MP	XCS PA	XCS TA
40	44	

Schneider

All heavy industrial machines, with quick rundown time (1)
Industrial format with or without locking
Metal with 1 cable entry, without locking
Metal with 1 cable entry, with manual locking/unlocking

Metal
Without locking of actuator.

Manual locking and unlocking of actuator by pushbutton or key operated lock (can be mounted on left or right-hand side of switch head).

EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 n ${ }^{\circ} 14$ and JIS C4520
EN/IEC 60204-1, EN/ISO 14119

UL, CSA

$40 \times 113.5 \times 44$	$52 \times 113.5 \times 44$
30×60	30×60
Turret head: 8 positions for insertion of actuator.	Turret head: 8 positions for insertion of actuator.
Safety contacts actuated by the actuator. Slow break and positive opening operation.	Safety contacts actuated by the actuator. Slow break and positive opening operation.
1 NC + 2 NO break before make $2 \mathrm{NC}+1$ NO break before make 3 NC	1 NC + 2 NO break before make $2 \mathrm{NC}+1 \mathrm{NO}$ break before make 3 NC
IP 67	
$25 . .+70^{\circ} \mathrm{C}$	
Screw clamp terminals. Tapped entry for Pg 13.5, ISO M20 cable gland or tapped 1/2" NPT	Screw clamp terminals. Tapped entry for Pg 13.5 cable gland, ISO M20 or tapped 1/2" NPT.
-	-

XCS A

Xcs B, Xcs C
48

Safety detection solutions Safety switches Preventa XCS

Enclosure

Degree of protection

Ambient air temperature For operation

Connection	Terminals
Pre-cabled Connector	

Type reference

Pages

Preventa XCS key operated switches, locking and unlocking by solenoid
Protection of operators by stopping the machine when the actuator (attached to machine guard) is withdrawn from the head of the switch. All industrial machines, with slow rundown time (1)

| Preventa XCS coded magnetic switches for detection without contact | | | |
| :--- | :--- | :--- | :--- | :--- |
| Protection of operators by stopping the machine when the gate is opened
 All light industrial machines fitted with access gates with imprecise guidance and/or subjected to frequent washing | | | |
| Miniature rectangular format | Compact rectangular format | Cylindrical format | Coded magnetic systems with dedicated
 transmitter |
| Plastic, pre-cabled or M8
 connector on flying lead | Plastic, pre-cabled or M12
 connector on flying lead | Plastic, pre-cabled or M12
 connector on flying lead | Plastic, pre-cabled or M12 connector |

Safety detection solutions
 Key operated switches

Refer to standards
 EN/ISO 12100 and EN/ISO 14119

Removable or movable protective guards for potentially dangerous machine functions must be used in conjunction with locking or interlocking devices.
Application requiring an interlocking device: high inertia (long rundown time) machines.
An interlocking device must be used when the rundown time is greater than the time it takes for a person to reach the danger zone.
This device ensures that the guard remains locked until the potentially dangerous movement has stopped.

The safety interlock switches, specifically designed for machine guarding applications, provide an ideal solution for the locking or interlocking of movable guards associated with industrial machinery. They meet the requirements of standards EN/ISO 12100, IEC/ISO 13852, EN/ISO 14119 and EN/IEC 60204-1. They contribute to the protection of operators working on potentially dangerous machines by breaking the start control circuit of the machine when a protective guard is opened or removed, using positive opening operation contacts, thus stopping the dangerous movement of the machine.
The removal/opening of the guard (after the dangerous movement has stopped) can either be:

- at the time the machine is switched-off for low inertia machines (machines where the rundown time is less than the time it takes for the operator to access the hazardous zone), or
- delayed for high inertia machines (machines where the rundown time is greater than the time it takes for the operator to access the hazardous zone).

The safety interlock switch if used in conjunction with a Preventa safety module enables designers to achieve $\mathrm{PL}=e$, category 4 control systems with reference to EN/ISO 13849-1 and SIL CL3 with conforming to EN/IEC 62061. When used on their own or combined with another switch, they can achieve up to category 1, 2 or 3 control circuit.
Safety related parts of control systems should be developed taking into account the results of an appropriate Risk Assessment.

The start command for the machine can only be initiated following correct operation of the safety interlock switch.
On its release, the NC safety contacts are opened by positive action or, for coded magnetic switches, change state (must be monitored using a Preventa safety module).

The safety interlock switches incorporate slow break or snap action contacts with positive opening operation (except for coded magnetic switches where this is not possible). For mechanical safety interlock switches, on closing of the guard the actuator fitted to it enters the head of the switch, operates the multiple interlock device and closes the NC contacts. For coded magnetic switches, the presence of the magnet causes the contacts to change state.

All safety interlock switches are designed to accept a few millimetres of misalignment between the actuator and the switch in order to compensate for mechanical play, vibration, etc.

Both mechanically and magnetically actuated safety interlock switches are designed to be operated by specific actuators so that they cannot be defeated in a simple manner using common tools, rods, metal plates, simple magnets, etc. When loosening the fixing screws for re-orientation of the turret head on safety interlock switches, the head itself remains attached to the switch body and the contact states remain unchanged. All safety interlock switches and safety limit switches are designed to avoid any adjusments in the head setting, removing the key actuator or to access the safety contacts without using the appropriate tool.
There are various methods for obtaining a higher level of tamper proofing, for example:

- using a cage device to prevent the insertion of a spare actuator or magnet, or any other foreign body,
- fixing the actuator or coded magnet to the guard by means that make it very difficult to remove (riveting or welding).

Safety detection solutions
 Key operated switches

Metal key operated switches case

Metal safety
interlock switches
case, mushroom
head pushbutton for escape release on XCS LF

Plastic case guard switches with
mechanical actuator

Without locking of actuator

Metal key operated switches case for use on machines with low inertia and operating in normal conditions (no vibration or shock and guard mounted vertically, without risk of rebound on closing), thus eliminating unintentional opening of the guard.

With locking of actuator and manual unlocking

Metal key operated switches case for use on heavy machines with low inertia and operating in arduous conditions (shock or vibration exist), whereby the guard could open unintentionally.
A key operated lock or a pushbutton enables the positive locking of the guard and its subsequent unlocking.

With interlocking and locking of actuator by solenoid

Metal safety interlock switches case for use on machines with high inertia or with a controlled opening of the protective guard.
The locking of the moving guard can either be on de-energisation or energisation of the solenoid
A key operated lock enables manual unlocking of the guard in the event of an interlocking circuit malfunction, and also provides extra safety for maintenance personnel likely to be working on the machine.
The switches incorporate 2 LEDs: one indicating guard "open/closed" and the other, guard "locked/unlocked".

With interlocking and locking of actuator by solenoid

Safety interlock switches type XCS LF are available with a mushroom head pushbutton mounted on the rear of the switch for unlocking the machine guard whilst being held in the locked position by the solenoid.
This manual unlocking using the mushroom head pushbutton for escape release is useful in the following cases:

- whilst the machine or a group of machines is undergoing maintenance, enabling operation at reduced speed or whilst stopped with the guard(s) closed. The safety of maintenance personnel is thus improved in the event of:
- a power failure,
- an interlocking circuit malfunction,
- personnel finding themselves in a dangerous situation.

Unlocking using the escape release mushroom head pushbutton takes priority over any other action. It therefore enables a person to leave the zone if the need arises.
The re-initialisation of this function is performed by turning (with or without key) the escape release mushroom head.

Without locking of actuator

Plastic safety interlock switches case for use on light machines with low inertia For use in arduous conditions (shock or vibration exist, guard not vertical or risk of rebound on closing) where the guard could open unintentionally, a guard retaining device (XCS PA or XCS TA) is available as an accessory.

With interlocking and locking of actuator by solenoid

Plastic safety interlock switches case for use on machines with high inertia or with a controlled opening of the protective guard.
The locking of the moving guard can either be on de-energisation or energisation of the solenoid
A special tool enables manual unlocking of the guard in the event of an interlocking circuit malfunction, and also provides extra safety for maintenance personnel likely to be working on the machine.

Safety detection solutions
Lever or spindle operated switches, safety limit switches and coded magnetic systems

Rotary lever and spindle operated switches for hinged guards

Safety limit switches

With head for rotary movement (lever or spindle)
Plastic case guard switches with straight or elbowed operating lever or spindle operator. Specifically designed for small industrial machines fitted with small sized hinged doors, covers or protective guards.
They protect the operator by immediately stopping the dangerous movement of the machine as soon as the rotary lever or spindle displacement reaches an angle of 5°.

With an associated coded magnet

Plastic case guard switches for use on machines with low inertia.
Specifically designed for industrial machines fitted with doors, covers or guards with imprecise guiding They are ideally suited for machines subjected to frequent washing or liquid spray.
They protect the operator by immediately stopping any dangerous movement, as soon as the distance between the switch and its magnet is greater than 8 or 5 mm , depending on the switch model.

With dedicated transmitter

These self-contained SIL 2/category 3, PL=d or SIL 3/ category $4, \mathrm{PL}=e$ systems protect the operator by immediately stopping any dangerous movement, as soon as the distance between the transmitter and the receiver exceeds 10 mm .
Plastic case system for use on machines with low inertia. Specifically designed for industrial machines fitted with one or more doors, covers or guards with imprecise guiding.
They are ideally suited for machines subjected to frequent washing or liquid spray and that are not necessarily equipped with an enclosure or control cabinet.

The key actuators are common to all metal and plastic safety interlock switches case types XCS LF and XCS LE

Th
eir Oblong fixing holes enable simple adjustment when mounting on moving guards.
A pivoting actuator (both horizontally and vertically) is available when using safety interlock switches in conjunction with hinged guards or guards with imprecise guiding.
Straight actuators are supplied with an adaptor shank for simple replacement of an XCS L safety interlock switch by an XCS switch, without the need to drill additional fixing holes for the switch or the key actuator.

Turret head

Safety contacts

All metal safety interlock switches case are fitted with a square turret head which can be rotated through 360° in 90° steps

8 directions of actuation are possible for
 the actuator:

- 4 in the horizontal plane
- 4 from above the switch (4 alternative positions of the actuator slot, depending on the orientation of the head). When loosening the fixing screw for re-orientation of the operating head, the head itself remains attached to the body and the contact states remain unchanged.

Metal safety interlock switches case incorporate a 3-pole contact block with positive opening operation, which is actuated by insertion or withdrawal of the actuator
attached to the guard.

An orange LED (optional for key operated switches type XCS A, XCS B and XCS C, standard for safety interlock switches type XCS LF and XCS LE) indicates the position of the machine guard:

LED illuminated: actuator not inserted in head of switch, NC contact(s) open, guard open.
LED not illuminated: actuator inserted in head of switch, NC contact(s) closed, guard closed.
A green LED (incorporated on safety interlock switches type XCS LF and XCS LE) indicates the locking of the machine guard:
Q LED not illuminated: actuator not inserted in head of switch. The machine cannot be operated.
LED illuminated: actuator inserted in head of switch and actuator locked. The machine is either ready for starting, running or decelerating to a standstill.
Note: LED wiring must be done according to schematics indicated in the instruction sheet or in the catalogue pages.

Safety detection solutions Metal case key operated switches

Manual locking/unlocking by pushbutton or key operated lock on XCS B and XCS C

The pushbutton or key operated lock fitted to key operated switches type XCS B and XCS C allows manual locking/unlocking of the machine guard

Their use is not necessary for the normal operation of the guard switch.
For ease of access, the pushbutton or lock may be mounted on the right or the left of the key operated switch head.
For key operated switches type XCS C, when the machine guard is locked (key in position "LOCK"), the resistance to forcible withdrawal of the actuator fitted to the guard is 150 daN . The key is removable from the locking device in the "LOCK" position.

Locking/unlocking by solenoid on XCS LF

Safety interlock switches type XCS LF incorporate a solenoid for locking/ unlocking of the machine guard

With the machine guard closed and locked, the resistance to forcible withdrawal of the actuator fitted to the guard is Fzh $2300 \mathbf{N}$ according to the verification principle GS-ET19 (Fzh=Fmax/1.3). In addition to the 3 -pole contacts, positively operated by the actuator fitted to the guard, safety interlock switches XCS LF incorporate $\mathrm{NC}+\mathrm{NO}$ or $\mathbf{2 N C}$ or $\mathbf{1 N C}+\mathbf{2 N O}$ or $\mathbf{2 N C}+\mathbf{1 N O}$ or 3 NC contact blocks mechanically linked to the solenoid.
The NC contact(s) are for use in the safety circuit of the machine and the NO contact for signalling the status of the solenoid.

Safety interlock switches type XCS LF are fitted with a key operated lock allowing the unlocking of the machine guard whilst being held in the lock position by the solenoid (for use by authorised personnel only)

The manual unlocking of the guard using the key
 operated lock is useful in the following cases:

- whilst the machine is undergoing maintenance (with the key turned to the "UNLOCK" position and then removed, the level of protection is higher in preventing an accidental machine start. The safety for maintenance personnel is thus improved):
- in the event of a power failure
- in the event of an interlocking circuit malfunction (interlocked condition maintained: positive safety).
The electrical supply providing the unlocking via the solenoid always takes priority over manual unlocking using the key operated lock. The lock fitted to standard safety interlock switches has key withdrawal from the "LOCK" and "UNLOCK" positions.

Example of operation for an XCS LF key operated switch with locking on de-energisation of solenoid

Machine status	Stopped, de-energised	Stopped, energised	Stopped, ready to start	Running	Stopping sequence	Stopped, energised
Guard position	Open	Open	Closed	Closed	Closed	Closed
Guard status	Free	Free	Free	Locked	Locked	Free
Solenoid status	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	$\text { " } 1 \text { " }$ (energised)	$" 1 "$ (energised)	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	$\text { " } 1 "$ (energised)
2-pole contact state for XCS LF25•••	$\begin{aligned} & \approx\left(\begin{array}{c} n \\ - \\ \approx \\ \approx \\ \hline \end{array}\right) \end{aligned}$	$\begin{aligned} & \approx\left[\begin{array}{c} m \\ \hdashline \\ \approx \\ \approx \end{array}\right] \end{aligned}$	$\begin{array}{l\|r\|} \approx & \frac{m}{1} \\ \approx & \\ \approx & j \end{array}$		$\begin{array}{l\|r\|} \approx & m \\ \approx & \bar{j} \\ \approx & j \end{array}$	$\begin{array}{l\|r\|} \approx & m \\ \approx & \bar{j} \\ \hdashline & j \end{array}$
2-pole contact state for XCS LF27•••	$\begin{aligned} & \bar{\sim}=4 \\ & \approx=1 \end{aligned}$	$\begin{aligned} & \approx L=L \\ & \approx=\sim \end{aligned}$	$\begin{array}{l\|l\|l} \bar{N} & =1 \\ & = \\ \approx & \approx \end{array}$			
3-pole contact state for XCS LF35•••						
3-pole contact state for XCS LF37•••						
3-pole contact state for XCS LF38•••	$\begin{aligned} & F L \bar{N}\lfloor\bar{m} L \\ & \approx / \sim / ल / \end{aligned}$	$\begin{aligned} & \left.F \left\lvert\, \begin{array}{l\|c\|} \bar{N} L & \bar{m} L \\ \sim / N / N \end{array}\right.\right) \end{aligned}$		$\begin{array}{l\|l\|l\|} \hline & \bar{N} & \bar{m} \\ & \approx & \\ & \approx & \approx \end{array}$		$\begin{aligned} & =\left\|\begin{array}{l\|l\|} & \therefore \\ & \bar{m} \\ \approx & \approx \\ \approx & \approx \end{array}\right\| \end{aligned}$
Functions	Machine at rest.	Machine cannot be operated.	Guard closed, actuator can be locked. It will be locked as soon as the start instruction is given.	Start instruction given, the machine is running.	Stop instruction given, the machine stops gradually (deceleration then complete stop of motor).	Machine has stopped. The guard can be opened.

Solenoid contact
states

2-pole contact state for XCS LF•e25•••						
2-pole contact state for XCS LF•e27•••				$\begin{array}{l\|l\|l} \bar{m} & \mathcal{F} \mid \\ & \mathcal{F} \end{array}$		
3-pole contact state for XCS LF••35•••						
3-pole contact state for XCS LF••37•••	$\begin{array}{c\|c\|c\|} \hline & \text { in } & 0 \\ \text { o } & \\ \text { y } & \text { กิ } & \text { す } \end{array}$					
3-pole contact state for XCS LF••38•••						
Orange LED	\otimes	洨	\otimes	\otimes	\otimes	\otimes
Green LED	\otimes	\otimes	\otimes	=	=	\otimes
Safety circuit of the machine	Open	Open	Open	Closed	Closed	Open

Safety detection solutions
 Plastic case key operated switches

Key actuators

Turret head

The key actuators are common to all plastic case key operated switches (except for XCS LE, see page 15)

Their oblong fixing holes enable simple adjustment when mounting on moving guards.

A pivoting actuator (both horizontally and vertically) is available when using guard switches in conjunction with hinged guards or guards with imprecise guiding.

Straight actuators are supplied with an adaptor shank for simple replacement of an XCK P key operated switch by an XCS PA switch, or an XCK T key operated switch by an XCS TA switch, without the need to drill additional fixing holes for the switch or the actuator.

Guard switches XCS PA, XCS TA and XCS LE are fitted with a square turret head which can be rotated through 360° in 90° steps. Guard switches XCS MP have a fixed head

8 directions of actuation are possible for the actuator:
4 in the horizontal plane (1 for XCS MP),
4 from above the switch (1 for XCS MP),
(4 alternative positions of the actuator slot, depending on the orientation of the head).

When loosening the 2 fixing screws or the 4 fixing screws (XCSLE) for re-orientation of the operating head, the head itself remains attached to the body and the contact states remain unchanged (XCS PA,
XCS TA).

The key operated switches incorporate either a 2-pole contact block (XCS MP, XCS PA and XCS LE) or a 3-pole contact block (XCS MP, XCS PA and XCS TA and XCS LE), with positive opening operation, which is actuated by insertion or withdrawal of the key actuator attached to the guard
XCS LE

or XCS PA

or XCS PA, XCS TA

or XCS MP

In addition, safety interlock switches type XCS LE incorporate 1 NC or 2 NC contacts (with positive opening operation) actuated by the solenoid.
The NC contact(s) are for use in the safety circuit of the machine. The withdrawal of the key actuator opens the NC safety contact(s), even in the event of the contact sticking or welding.
The two-pole 2 NC or three-pole 2 NC + 1 NO or 3 NC (XCS TA/ XCS MP, XCS PA and XCS LE only) contact block enables up to $\mathrm{PL}=\mathrm{d}$, category 3 control circuit to be established conforming to EN/ISO 13849-1, by using both NC safety contacts in redundancy, or up to PL = b, category 1 control circuit by using one NC contact in the safety circuit and the NO other contact for signalling (for example: PLC, illuminated beacon, etc.).

Safety detection solutions
 Plastic case key operated switches

Guard retaining device

The guard retaining device XCS $\mathrm{Z21}$ can be used with all plastic key operated switches case type
XCS PA and XCS TA that are used in conjunction with either the wide (XCS Z12) or pivoting (XCS Z13)
actuator

Locking/unlocking by solenoid on XCS LE

Unlocking by special tool for XCS LE

XCS LE / XCS LF

Resilience

XCS LE against the partition: $\max =1.2 \mathrm{~J}$
XCS LE without partition: $\max =4.9 \mathrm{~J}$

The manual unlocking of the guard using the tool 1 is useful in the following cases: - whilst the machine is undergoing maintenance (with the tool turned to the "UNLOCK" position and then removed, the level of protection is higher in preventing an accidental machine start. The safety for maintenance personnel is thus improved), - in the event of a power failure,

- in the event of an interlocking circuit malfunction (interlocked condition maintained: positive safety). The electrical supply providing the unlocking via the solenoid always takes priority over manual unlocking using the special tool.

Safety interlock switches type XCS LE are supplied with a special tool 1 that enables unlocking of the machine guard whilst being held in the locked position by the solenoid (for use by authorised personnel only)

XCS LF against the partition: $\max =9.6 \mathrm{~J}$ XCS LE without partition: $\max =6.4 \mathrm{~J}$

Example of operation for an XCS LE key operated switch with locking on de－energisation of solenoid

Machine status	Stopped， de－energised	Stopped， energised	Stopped， ready to start	Running	Stopping sequence	Stopped，energised
Guard position	Open	Open	Closed	Closed	Closed	Closed
Guard status	Free	Free	Free	Locked	Locked	Free
Solenoid status	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	"1" （energised）	$\begin{aligned} & \text { "1" } \\ & \text { (energised) } \end{aligned}$	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	$\begin{aligned} & " 1 " \\ & \text { (energised) } \end{aligned}$
2－pole contact state for XCS LE25•••						
2－pole contact state for XCS LE27•••	$\begin{aligned} & \bar{N}=\downarrow \\ & \approx=1 \\ & \approx \end{aligned}$	$\begin{aligned} & \approx L=1 \\ & \approx=\sim \end{aligned}$	$\begin{array}{l\|l} \therefore & =1 \\ \approx & = \\ \approx & \approx \end{array}$	$\begin{array}{l\|l\|l} \bar{N} & =1 \\ & \approx \\ & \approx \end{array}$	$\begin{array}{l\|l\|} \approx & =1 \\ & = \\ \approx & \approx \end{array}$	$\begin{array}{l\|l\|l} \approx & =1 \\ & = \\ & \approx & \approx \end{array}$
3－pole contact state for XCS LE35•••						
3－pole contact state for XCS LE37•••						
3－pole contact state for XCS LE38•••					$\begin{array}{l\|l\|l\|} =\mid & \approx \mid & \bar{m} \mid \\ & \approx & \approx \\ & \approx \end{array}$	
Functions	Machine at rest．	Machine cannot be operated．	Guard closed， actuator can be locked．It will be locked as soon as the start instruction is given．	Start instruction given，the machine is running．	Stop instruction given，the machine stops gradually （deceleration then complete stop of motor）．	Machine has stopped． The guard can be opened．

Solenoid contact
states

2－pole contact state for XCS LEeャ25•••						
2－pole contact state for XCS LEeャ27•••	$\begin{array}{l\|l} \bar{m} L & \bar{\gamma} L \\ \text { ल/ } \end{array}$	$\begin{array}{l\|l} \bar{m} L \\ \bar{\gamma} L \\ ल & \sim \end{array}$				
3－pole contact state for XCS LEeゃ35•••						
3－pole contact state for XCS LE••37•••						
3－pole contact state for XCS LEゃゃ38•••						
Orange LED	\bigotimes	昗	\otimes	\otimes	\otimes	\otimes
Green LED	\otimes	\bigotimes	\otimes	沙	洝立	\otimes
Safety circuit of the machine	Open	Open	Open	Closed	Closed	Open

2 types of operating lever, 2 spindle lengths

■ Levers

Straight or elbowed (flush with rear of switch), making the lever switches suitable for use with all types of hinged guards, whether:

- flush with the machine framework (use a switch with an elbowed flush lever),
- overhanging in relation to the machine framework (use a switch with a straight lever).
3 alternative operating lever positions allow the switches to be used with guards that open to the left, centre or right.
■ Spindle operators
2 spindle lengths: 30 or 80 mm .

Safety contacts

Applications
These safety switches provide a solution for monitoring hinged protective guards with small opening radius on machines with low inertia (no rundown time).
They are specially suitable for existing machines which need to be brought in-line with the latest standards and directives since they can be used in conjunction with existing covers, including those whose mounting is somewhat imprecise.
Mounting of the safety switch improves the machine operator's level of safety by limiting the opening of the protective guard and reducing the risk of touching any moving parts before they have come to a stop.


```
3 types of case
- PBT plastic body.
- Compact rectangular, XCS DMC
■ Standard rectangular, XCS DMP
■ Cylindrical Ø 30, XCS DMR
- Pre-cabled, length \(2 \mathrm{~m}, 5 \mathrm{~m}\) or 10 m .
■ Connector on flying lead connection:
- M8: DMC
- M12: DMP, DMR
```


Contacts

Coded magnetic switches are fitted with 2-pole
(XCS DMC/XCS DMR/XCS DMP) or 3-pole
(XCS DMP) Reed type contacts and are available with or without a "guard closed" LED indicator.
The NC and NO contacts change state as soon as the magnet is at a distance from the sensor of approximately 8 mm for types XCS DMP and XCS DMR and approximately 5 mm for type XCS DMC

Connection

When used in safety circuits, the Reed technology contacts must always be used in conjunction with a Preventa safety module.

Coded magnetic systems with dedicated transmitter

1 type of case

- PBT plastic body.

■ Self-contained range: SIL2/PL =d, category 3
XCS DM3 and SIL3/PL =e, category 4 XCS DM4.
■ Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m .

- Flying lead with M12 connector.

Technology

Coded "Hall effect" detection.

PNP safety outputs

Integrated self-monitoring using micro-processors.
Detection distance from 0 to 10 mm obtained on approach of dedicated transmitter XCS DMT.

Functions

■ Dynamic EDM (External Device Monitoring) only for
XCS DM4.
■ Fault and short-circuit detection.

- Output diagnostics (non safety related) only for XCS DM4.
- LED indicator.
- Possible chaining of up to a maximum of 32 systems
for XCS DM3 only.

These switches provide a solution for monitoring moveable machine guards fitted to machines with quick rundown times.
They are particularly suitable for guards without accurate guidance and for use in difficult environments (dust, liquids, etc.).
Installing self-contained coded magnetic systems provides an optimum solution (no control system required). They enable:

- monitoring of one or several guards (opening, closing) on small machines,
- savings in space and the elimination of enclosures and/or control cabinets.

Safety limit switches XCS M

With head for linear movement（plunger）or rotary movement（lever）

－Narrow metal case XCS M．
－With protective plate，preventing both access to the fixing screws or adjustment of the head by non authorised personnel．
－Torx fixing screws．
－A removable cable entry to facilitate wiring．

Contacts

XCS M3 limit switches are fitted with 3－pole contacts and XCS M4 switches are fitted with 4－pole contacts．
4 versions of complete switches are available incorporating these contacts：
－metal end plunger，
－roller plunger，
－thermoplastic roller lever，
－diameter 19 mm steel roller lever．

Connection

Pre－cabled switches，either $7 \times 0.5 \mathrm{~mm}^{2}$ or $9 \times 0.34 \mathrm{~mm}^{2}$ ．

Safety limit switches XCS D and XCS P
With head for linear movement（plunger）or rotary movement（lever）

－Compact metal case XCS D and plastic case XCS P．
－With protective plate，preventing both access to the
fixing screws or adjustment of the head by non authorised personnel．
－Torx fixing screws．
－A removable cable entry to facilitate wiring．

Contacts

XCS P3・ゃゃゃ and XCS D3 $\bullet \bullet \bullet \bullet$ limit switches are fitted with 3－pole contacts．
4 versions of complete switches are available incorporating these contacts：
－metal end plunger，
－roller plunger，
－thermoplastic roller lever，
－diameter 19 mm steel roller lever．

Applications

These switches provide a solution for monitoring covers，guards or grilles on machines with low inertia （quick rundown time），either in conjunction with key operated switches or not． When used on their own，they are always installed in＂positive mode＂or combined in pairs，with one switch being in＂positive mode＂and the other in＂negative mode＂，and can，when connected to Preventa safety modules，achieve a $\mathrm{PL}=e$ ，category $4 /$ SIL 3 system．

Safety detection solutions

Limit switches
Miniature design, metal, type XCS M

With head for linear movement (plunger). Fixing by the body

Page 26
With head for rotary movement (lever). Fixing by the body

敛

Page 26

General characteristics

Safety detection solutions

Limit switches

Miniature design, metal, type XCS M

(1) Protection against prolonged immersion: the test conditions are subject to agreement between the manufacturer and the user.

References, characteristics

Safety detection solutions
Safety limit switches
Miniature design, metal, type XCS M
Pre-cabled

Type of head	Plunger (fixing by the body)	Rotary (fixing by the body)

Type of operator		Metal end plunger	Roller plunger	Thermoplastic roller lever	Steel roller lever
References					
	3-pole $2 \mathrm{NC}+1$ NO snap action contact			XCS M3915L1 Θ	XCS M3916L1
	3-pole 2 NC + 1 NO break before make, slow break contact		XCS M3702L1 Θ	XCS M3715L1 Θ	xcs M3716L1 Θ
	4-pole $2 \mathrm{NC}+2 \mathrm{NO}$ snap action contact	XCS M4110L1		XCS M4115L1 Θ 	XCS M4116L1 Θ
Contact operation		0.165	0.170	(A) = cam displacement $(P)=$ positive opening point $\Theta N C$ contact with opening positive operation	
		\squareclosed open			
Complementary characteristics not shown under general characteristics (page 25)					
Switch actuation		On end	By $30^{\circ} \mathrm{cam}$		
Type of actuation			$\vec{\square}$		
Maximum actuation speed		$0.5 \mathrm{~m} / \mathrm{s}$ $0.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$	
Mechanical durability		10 million operating cycles			
Minimum force or torque	Tripping	8.5 N	7 N	0.5 N.m0.1 $\mathrm{N} . \mathrm{m}$	
	Positive opening	42.5 N	35 N		
Cabling	3 -pole contacts	PvR pre-cabled, $7 \times 0.5 \mathrm{~mm}^{2}$, length 1 m (1)			
	4 -pole contacts	PvR pre-cabled, $9 \times 0.34 \mathrm{~mm}^{2}$, length $1 \mathrm{~m}(1)$			
		(1) For a $2 m$ long cable, replace L1 with L2. For a 5 m long cable, replace L1 with L5.			

Dimensions, connections

Safety detection solutions
Safety limit switches
Miniature design, metal, type XCS M Pre-cabled

Dimensions
XCSM ••10L1

(1) Protective plate fixed by 5-lobe torque safety screws.

XCSM ••15L1

XCSM ••02L1

(1) 15°

XCSM ••16L1

(1) Protective plate fixed by 5-lobe torque safety screws.

Connections

Wiring up to $\mathrm{PL}=\mathrm{b}$, category 1 conforming to EN/ISO 13849-1
Example with 3-pole $2 \mathrm{NC}+1 \mathrm{NO}$ contact and protection fuse to prevent shunting of the N/C contacts, either by cable damage or by tampering.

(1) Signalling contact

Exam of

Safety detection solutions

Limit switches
Compact design, metal, type XCS D
Compact design, plastic, type XCS P
\square With head for linear movement (plunger)
with 1 cable entry
XCS D
XCS P
Conforming to standard EN 50047

Page 30
\square With head for rotary movement (lever) XCS D

XCS P

Page 30

Page 32

Safety detection solutions

Limit switches
Compact design, metal, type XCS D
Compact design, plastic, type XCS P

Environment characteristics		
Conformity to standards	Products	EN/IEC 60947-5-1, UL 508, CSA C22-2 n 14
	Machine assemblies	EN/IEC 60204-1, EN/ISO 14119
Product certifications		UL, CSA
Maximum safety level (1)		PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		50000000 (value given for a service life of 20 years, limited by mechanical or contact wear)
Protective treatment	Standard version	"TC"
Ambient air temperature	For operation	$-25 \ldots+70^{\circ} \mathrm{C}$
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}$
Vibration resistance	Conforming to EN/IEC 60068-2-6	$25 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$
Shock resistance	Conforming to EN/IEC 60068-2-27	$50 \mathrm{gn} \mathrm{(11} \mathrm{ms)}$
Electric shock protection		Class I conforming to IEC 61140 for XCS D
		Class II conforming to IEC 61140 for XCS P
Degree of protection	Conforming to EN/IEC 60529	IP 66 and IP 67
	Conforming to EN 50102	IK 06 for XCS D IK 04 for XCS P
Repeat accuracy		0.1 mm on the tripping points, with 1 million operating cycles for head with end plunger
Cable entry	Depending on model	Tapped entry for 13.5 cable gland, tapped ISO M20 1.5 or tapped 1/2" NPT
Materials		XCS D: Zamak bodies and heads, XCS P: plastic bodies, Zamak heads Plastic protective cover, secured by 5 -lobe torque safety screw
Contact block characteristics		
Rated operational characteristics		~AC-15; B300 ($\mathrm{Ue}=240 \mathrm{~V}$, le $=1.5 \mathrm{~A}$); lthe $=6 \mathrm{~A}$ =- DC-13; R300 ($\mathrm{Ue}=250 \mathrm{~V}$, le $=0.1 \mathrm{~A}$), conforming to EN/IEC 60947-5-1 Appendix A
Rated insulation voltage		$\mathrm{Ui}=400 \mathrm{~V}$ degree of pollution 3 conforming to IEN/IEC 60947-1 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 n ${ }^{\circ} 14$
Rated impulse withstand voltage		U imp $=4 \mathrm{kV}$ conforming to EN/IEC 60947-1, EN/IEC 60664
Positive operation (depending on model)		NC contacts with positive opening operation conforming to IEN/IEC 60947-5-1 Appendix K
Resistance across terminals		$\leqslant 25 \mathrm{~m} \Omega$ conforming to EN/IEC 60255-7 category 3
Short-circuit protection		6 A cartridge fuse type gG (gl)
Connection (screw clamp terminals)		Clamping capacity, min: $1 \times 0.34 \mathrm{~mm}^{2}$, max: $1 \times 1 \mathrm{~mm}^{2}$ or $2 \times 0.75 \mathrm{~mm}^{2}$
Minimum actuation speed (for head with end plunger)	Snap action	$0.01 \mathrm{~m} /$ minute
	Slow break	$6 \mathrm{~m} / \mathrm{minute}$

(1) Using an appropriate and correctly connected control system.

References, characteristics, dimensions

Safety detection solutions

Limit switches

Compact design, metal, type XCS D
Complete switches with 1 cable entry

Type of head	\| Plunger		Rotary	
Type of operator	Metal end plunger	Steel roller plunger	Thermoplastic roller lever	Steel roller lever
References of complete switches with 3-pole 2 NC + 1 NO snap action contact				
With ISO M20 x 1.5 cable entry				
	XCS D3910P20	XCS D3902P20	XCS D3918P20	XCS D3919P20
With Pg 13.5 cable entry				
	XCS D3910G13	XCS D3902G13	XCS D3918G13	XCS D3919G13
With 1/2" NPT cable entry				
	XCS D3910N12	XCS D3902N12	XCS D3918N12	XCS D3919N12
Weight (kg)	0.215	0.220	0.255	0.255
Contact function diagrams				
$\text { 3-pole } 2 \text { NC + } 1 \text { NO }$ snap action				
Contact operation	closed $(A)=$ cam displacement open $(P)=$ positive opening point Θ NC contact with positive opening operation			
Characteristics				
Switch actuation	On end	By $30^{\circ} \mathrm{cam}$		
Type of actuation				
Maximum actuation speed	$0.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$	
Mechanical durability (in millions of operating cycles)	15	10		
Minimum force or torque For tripping	15 N	12 N	0.1 N.m	
For positive opening	45 N	36 N	0.25 N.m	
Cable entry	1 entry tapped M20 1 entry tapped Pg 1 entry tapped for 1	5 mm for ISO cable for cable gland, clam NPT (USAS B2-1) co	d, clamping capacity capacity 9 to 12 mm it	$\text { to } 13 \mathrm{~mm}$
Dimensions				
(1) Tapped entry for ISO M20 $\times 1.5$ or Pg 13.5 cable gland or tapped 1/2" NPT. (2) 2 elongated holes $\varnothing 4.3 \times 6.3 \mathrm{~mm}$ on 22 mm centres, 2 holes $\varnothing 4.3$ on 20 mm centres. (3) $2 \times \emptyset 3$ holes for support studs, depth 4 mm .	XCS D3•10•••		XCS D3•02•••	

References, characteristics, dimensions (continued)

Safety detection solutions

Limit switches

Compact design, metal, type XCS D
Complete switches with 1 cable entry

References, characteristics, dimensions

Safety detection solutions

Limit switches

Compact design, plastic, type XCS P
Complete switches with 1 cable entry

Type of head	\| Plunger		Rotary	
Type of operator	Metal end plunger	Steel roller plunger	Thermoplastic roller lever	Steel roller lever
References of complete switches with 3-pole 2 NC + 1 NO snap action contact				
With ISO M20 x 1.5 cable entry				
	XCS P3910P20	XCS P3902P20	XCS P3918P20	XCS P3919P20
With Pg 13.5 cable entry				
	XCS P3910G13	XCS P3902G13	XCS P3918G13 Θ	XCS P3919G13 Θ
With 1/2" NPT cable entry				
	XCS P3910N12	XCS P3902N12	XCS P3918N12	XCS P3919N12
Weight (kg)	0.215	0.220	0.255	0.255
Contact function diagrams				
$\text { 3-pole } 2 \text { NC + } 1 \text { NO }$ snap action				
Contact operation	(A) $=$ cam displacement open $(P)=$ positive opening point NC contact with positive opening operation			
Characteristics				
Switch actuation	On end	By $30^{\circ} \mathrm{cam}$		
Type of actuation				
Maximum actuation speed	$0.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$	
Mechanical durability (in millions of operating cycles)	15	10		
Minimum force or torque For tripping	15 N	12 N	0.1 N.m	
For positive opening	45 N	36 N	0.25 N.m	
Cable entry	1 entry tapped M20 1 entry tapped Pg 1 1 entry tapped for 1	5 mm for ISO cable g for cable gland, clamp NPT (USAS B2-1) con	d, clamping capacity capacity 9 to 12 mm it	$\text { to } 13 \mathrm{~mm}$
Dimensions				
(1) Tapped entry for ISO M20 $\times 1.5$ or Pg 13.5 cable gland or tapped 1/2" NPT. (2) 2 elongated holes $\varnothing 4.3 \times 6.3 \mathrm{~mm}$ on 22 mm centres, 2 holes $\varnothing 4.3$ on 20 mm centres. (3) $2 \times \emptyset 3$ holes for support studs, depth 4 mm .	XCS P3•10•••		XCS P3•02•••	

References, characteristics, dimensions (continued)

Safety detection solutions

Limit switches

Compact design, plastic, type XCS P
Complete switches with 1 cable entry

Type of head	Plunger		Rotary	
Type of operator	Metal end plunger	Steel roller plunger	Thermoplastic roller lever	Steel roller lever
References of complete switches with 3-pole $2 \mathrm{NC}+1$ NO break before make, slow break contact				
With ISO M20 x 1.5 cable entry				
	XCS P3710P20	XCS P3702P20	XCS P3718P20	XCS P3719P20 Θ
With Pg 13.5 cable entry				
	XCS P3710G13	XCS P3702G13	XCS P3718G13	XCS P3719G13
With 1/2" NPT cable entry				
	XCS P3710N12	XCS P3702N12	XCS P3718N12	XCS P3719N12
Weight (kg)	0.215	0.220	0.255	0.255
Contact function diagrams				
Contact operation	(A) = cam displacement open $(P)=$ positive opening point NC contact with positive opening operation			
Characteristics				
Switch actuation	On end	By $30^{\circ} \mathrm{cam}$		
Type of actuation				
Maximum actuation speed	$0.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$	
Mechanical durability (in millions of operating cycles)	15	10		
Minimum force or torque	$15 \mathrm{~N}$	12 N	0.1 N.m	
For positive opening	$45 \mathrm{~N}$	36 N	0.25 N.m	
Cable entry	1 entry tapped M20 1.5 mm for ISO cable gland, clamping capacity 7 to 13 mm 1 entry tapped Pg 13.5 for cable gland, clamping capacity 9 to 12 mm 1 entry tapped for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit			
Dimensions				
	XCS P3•18••๑,	CS P3•19•••		

Presentation

Safety detection solutions

Lever or spindle operated switches
Plastic, double insulated, turret head,
types XCS PL, XCS TL, XCS PR and XCS TR

XCS PL with 1 cable entry
With rotary operating head, with elbowed lever (flush with rear of switch) or straight lever, for hinged covers and guards

With rotary operating head, with spindle operator, for hinged covers and guards

Page 36
With rotary operating head, with elbowed lever (flush with rear of switch) or straight lever, for hinged covers and guards

Page 36

With rotary operating head, with spindle operator, for hinged covers and guards

Safety detection solutions

Lever or spindle operated switches

Plastic, double insulated, turret head, types XCS PL, XCS TL, XCS PR and XCS TR

Environment characteristics

Conformity to standards	Products	EN/IEC 60947-5-1, EN/IEC 60947-5-4, UL 508, CSA C22-2 n 14
	Machine assemblies	EN/IEC 60204-1, EN/ISO 14119
Product certifications		UL, CSA, BG
Maximum safety level (1)		PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		5000000 (value given for a service life of 20 years, limited by mechanical or contact wear)
Protective treatment		Standard version: "TC" and "TH"
Ambient air temperature	For operation	$-25 . . .+70^{\circ} \mathrm{C}$
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}$
Vibration resistance		$50 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to EN/IEC 60068-2-6
Shock resistance		50 gn (duration 11 ms) conforming to EN/IEC 60068-2-27
Electric shock protection		Class 2 conforming to EN/IEC 60536
Degree of protection		IP 67 conforming to EN/IEC 60529
Cable entry		XCS Pe: 1 entry tapped M16 $\times 1.5$ for ISO cable gland (clamping capacity 4.5 to 10 mm) or for $n^{\circ} 11$ (Pg 11) cable gland conforming to NF C 68-300 (DIN Pg 11) (clamping capacity 7 to 10 mm) or tapped for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit. XCS Te: 2 entries tapped M16 $\times 1.5$ for ISO cable gland (clamping capacity 4.5 to 10 mm) or for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland conforming to NF C 68-300 (DIN Pg 11) (clamping capacity 7 to 10 mm) or for $1 / 2^{\prime \prime}$ NPT conduit using adaptor DE9 RA1012 in one of the $\mathrm{n}^{\circ} 11$ tapped entries and a blanking plug in the other.
Materials		Polyamide PA66 fibreglass impregnated case. Stainless steel lever and fixings
Contact block characteristics		
Rated operational characteristics	2 and 3 contact versions slow break	XCS PL, XCS TL, XCS PR and XCS TR: $\sim A C-15, A 300: ~ U e=240 \mathrm{~V}$, $\mathrm{le}=3 \mathrm{~A}$ or $\mathrm{Ue}=120 \mathrm{~V}$, $\mathrm{le}=6 \mathrm{~A}$ All models: --- DC-13, Q300: $\mathrm{Ue}=250 \mathrm{~V}, \mathrm{le}=0.27 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$, le $=0.55 \mathrm{~A}$ conforming to IEC/EN 60947-5-1
Rated insulation voltage	2 and 3 contact versions	XCS PL, XCS TL, XCS PR, XCS TR: $\mathrm{Ui}=500 \mathrm{~V}$ conforming to IEC/EN 60947-1 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$
	3 contact version	XCS PL, XCS PR: $\mathrm{Ui}=400 \mathrm{~V}$ degree of pollution 3 conforming to EN/IEC 60947-1 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$
Rated impulse withstand voltage	2 and 3 contact versions	XCS PL, XCS TL, XCS PR, XCS TR: Uimp $=6 \mathrm{kV}$ conforming to EN/IEC 60947-5-1
	3 contact version	XCS PL, XCS PR: Uimp $=4 \mathrm{kV}$ conforming to EN/IEC 60947-5-4
Positive operation		NC contacts with positive opening operation conforming to EN/IEC 60947-5-1, Section 3
Resistance across terminals		$\leqslant 30 \mathrm{~m} \Omega$ conforming to EN/IEC 60947-5-4
Short-circuit protection	2 and 3 contact versions	XCS PL, XCS TL, XCS PR, XCS TR: 10 A cartridge fuse type gG (gl)
	3 contact version	XCS PL, XCS PR: 6 A cartridge fuse type gG (gl)
Connection	2 contact version	XCS PL, XCS TL, XCS PR, XCS TR: Clamping capacity, min: $1 \times 0.5 \mathrm{~mm}^{2}$, max: $2 \times 1.5 \mathrm{~mm}^{2}$ with or without cable end
	3 contact version	XCS PL, XCS PR: Clamping capacity, min: $1 \times 0.34 \mathrm{~mm}^{2}$, max: $1 \times 1 \mathrm{~mm}^{2}$ or $2 \times 0.75 \mathrm{~mm}^{2}$
Minimum actuation speed	3 contact version	0.01 m/second
Complementary characteristics		
Tripping angle		5°
Mechanical durability		1 million operating cycles
Minimum torque		$\begin{aligned} & \text { For tripping: } 0.1 \text { N.m, for positive opening: } 0.25 \text { N.m (XCS PL and XCS PR). } \\ & 0.45 \text { N.m (XCS TL and XCS TR) } \end{aligned}$

(1) Using an appropriate and correctly connected control system.

Electrical durability

References, characteristics

Safety detection solutions

Lever or spindle operated switches
Plastic, double insulated, turret head ${ }_{(1)}$, types XCS PL, XCS TL, XCS PR and XCS TR 1 or 2 cable entries
Operator

Straight lever
Spindle

References of complete switches (Θ NC contact with positive opening operation) with 1 cable entry tapped ISO M16 x 1.5

2-pole 1 NC + 1 NO break before make, slow break		XCS PL592	XCS PL582	XCS PL572	XCS PL562	XCS PL552	XCS PR552
2-pole 2 NC slow break		XCS PL792	XCS PL782	XCS PL772	XCS PL762	XCS PL752	XCS PR752
3-pole $1 \text { NC + } 2 \text { NO }$ break before make, slow break		-	-	-	XCS PL862	-	XCS PR852
3-pole $2 \mathrm{NC}+1 \mathrm{NO}$ break before make, slow break		-	XCS PL982	-	XCS PL962	-	XCS PR952
Weight (kg)		0.095	0.095	0.095	0.095	0.095	0.105

References of complete switches (Θ NC contact with positive opening operation) with 2 cable entries tapped ISO M16 $\times 1.5$

3 -pole $1 \mathrm{NC}+2 \mathrm{NO}$ break before make, slow break		XCS TL592	XCS TL582	XCS TL572	XCS TL562	XCS TL552	XCS TR552
3 -pole $2 \mathrm{NC}+1 \mathrm{NO}$ break before make, slow break		XCS TL792	XCS TL782	XCS TL772	XCS TL762	XCS TL752	XCS TR752
3-pole 3 NC slow break		XCS TL892	XCS TL882	XCS TL872	XCS TL862	XCS TL852	XCS TR852
Weight (kg)		0.145	0.145	0.145	0.145	0.145	0.155

References of complete switches with 1 or 2 cable entries tapped $\mathrm{n}^{\circ} 11$ (Pg 11)
To order a complete switch with 1 or 2 Pg 11 cable entries, replace the last number in the reference (2) by 1.
Example: XCS TL592 becomes XCS TL591.
References of complete switches with 1 or 2 cable entries for $1 / 2$ " NPT conduit
To order a complete type XCS PL $\bullet \bullet$ or XCS PR $\bullet \bullet \bullet$ switch with 1 cable entry for 1/2" NPT conduit, replace the last number in the reference (2) by 3.
Example: XCS PL592 becomes XCS PL593
For a complete switch type XCS TL or XCS TR with 2 entries for 1/2" NPT conduit, use adaptor DE9 RA1012.

	Description	Sold in lots of 10

(1) Head adjustable in 90° steps throughout 360°. Switches supplied with 2 additional self-locking screws for positive fixing of the head.
(2) For switches with 80 mm spindle: replace the $2^{\text {nd }}$ number in the reference (5) by 6. Example: XCS PR561. The weight increases by 0.032 kg . Other versions: please consult our Customer Care Centre.

Setting-up, dimensions, schemes

Safety detection solutions
Lever or spindle operated switches
Plastic, double insulated, turret head, types XCS PL, XCS TL, XCS PR and XCS TR 1 or 2 cable entries

(2) 1 entr
\varnothing : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres,
2 holes $\varnothing 4.3$ on 20 centres

XCS PR•••

[^0]L = 30 (XCS PR•5•) or 80 (XCS PR•6•)

Schemes

Wiring up to PL=b, category 1 conforming to EN/ISO 13849-1
Example with cable short-circuit protection fuse

Wiring up to PL=d, category 3 conforming
to EN/ISO 13849-1
Example with 3-pole 1 NC +2 NO contact with
mixed redundancy of the contacts and
the associated control relays

(1) 2 entries tapped ISO M16 $\times 1.5$ or tapped for $n^{\circ} 11$ (Pg 11) cable gland
(2) 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres, 2 holes $\varnothing 4.3$ on 20 centres
(3) 2 elongated holes $\varnothing 5.3 \times 13.3$ $\mathrm{L}=30$ (XCS TR•5•) or 80 (XCS TR•6•)

To activate K1, the lever or spindle must be rotated when the supply is switched on.
H1: "lever or spindle displaced from initial position" indicator. When used in conjunction with an XPS module and another safety switch, the rotary lever or spindle operated switch can provide locking protection to $\mathrm{PL}=\mathrm{d}$, category 3 or $\mathrm{PL}=\mathrm{e}$, category 4 conforming to EN/ISO 13849-1.

Presentation, characteristics

Safety detection solutions
 Key operated switches

Metal, turret head, types XCS A, XCS and XCS C
Plastic, double insulated, turret head, types XCS MP or XCS PA and XCS TA

Metal, types XCS A, XCS B,

 XCS CKey operated switches with or without locking of the actuator

Page 48
Plastic, types XCS MP, XCS PA XCS TA

Key operated switches with or without locking of the actuator

Page 40
Environment characteristics

Key operated switch type		XCS A, XCS B, XCS C (metal)	XCS MP, XCS PA, XCS TA (plastic)
Conformity to standards	Products	EN/IEC 60947-5-1, UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$	
	Machine assemblies	EN/IEC 60204-1, EN/ISO 14119	
Product certifications		UL, CSA	UL, CSA (cULus for XCS MP)
Maximum safety level (1)		PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061	
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		5000000 (value given for a service life of 20 years, limited by mechanical or contact wear)	
Protective treatment		Standard version: "TC"	
Ambient air temperature	For operation	$-25 \ldots+70^{\circ} \mathrm{C}$	
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}\left(-25 \ldots+80^{\circ} \mathrm{C}\right.$ for XCS MP)	
Vibration resistance		$5 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to EN/IEC $60068-2-6$ ($6 \mathrm{gn}(10 \ldots 55 \mathrm{~Hz}$) for XCS MP)	
Shock resistance		10 gn (duration 11 ms) conforming to EN/IEC 60068-2-27 (50 gn (duration 11 ms) for XCS MP)	
Electric shock protection		Class 1 conforming to EN/IEC 60536 Class 2 conforming to EN/IEC 60536	
Degree of protection		IP 67 conforming to EN/IEC 60529 and EN/IEC 60947-5-1 (2)	
Cable entry		1 entry tapped ISO M20 $\times 1.5$ (clamping capacity 7 to 13 mm) or tapped for $\mathrm{n}^{\circ} 13$ (Pg 13.5) cable gland conforming to NFC 68-300 (clamping capacity 9 to 12 mm) or for 1/2" NPT (USAS B2-1) conduit	1 entry (XCS PA) or 2 entries (XCS TA) tapped for ISO M16 $\times 1.5$ cable gland (clamping capacity 4.5 to 10 mm) or for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland, or tapped $1 / 2^{\prime \prime}$ NPT, or for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit using metal adaptor DE9 RA1012) for XCS TA (other entry fitted with blanking plug).
Connecting cable		-	Pre-cabled, either $4 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$ (XCS MP)
Materials		XCS A/B/C Zamak case	XCS MP/PA/TA Polyamide PA66 fibreglass impregnated case
		Actuators (all types): steel XC60, surface treated	
		(1) Using an appropriate and correctly connec (2) Live parts of these switches are protected However, when installing take all necessar bodies, or liquids with a high dust content, use in saline atmospheres.	d control system. ainst the penetration of dust and water. precautions to prevent the penetration of solid the actuator aperture. Not recommended for

Safety detection solutions
Key operated switches
Metal, turret head, types XCS A, XCS and XCS C
Plastic, double insulated, turret head,
types XCS MP or XCS PA and XCS TA

Contact block characteristics

| Rated operational |
| :--- | :--- | :--- | :--- | :--- | :--- |
| characteristics |

Load factor: 0.5

References, characteristics

Safety detection solutions

Key operated switches
Plastic, fixed head, type XCS MP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m
Type of switch

References of switches without actuator $(\Theta$ NC contact with positive opening operation) (1) (3)

2-pole 1 NC + 1 NO
break before make, slow break (2)

2-pole 2 NC
slow break (2)

3-pole 2 NC + 1 NO
break before make, slow break (2)

3-pole 3 NC
slow break (2)
 xcs MP59L•
Θ

XCS MP79L•
Θ
xcs MP70L•
Θ
xcs MP80L•
Θ
0.110

Weight (kg)

n under general characteristics (page 38)

| Actuation speed | Maximum: $1.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.05 \mathrm{~m} / \mathrm{s}$ | |
| :--- | :--- | :--- | :--- |
| Resistance to forcible withdrawal of actuator | 8 N | |
| Mechanical durability | >1 million operating cycles | |
| Pre-cabled connection | $4 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$ | |
| Maximum operating rate | For maximum durability: 1200 operating cycles per hour | |
| Minimum force for extraction of actuator | $\geqslant 8 \mathrm{~N}$ | |
| References of actuators Straight actuator Right-angled
 actuator Pivoting actuator
 For right-hand door
 Description For left-hand door | | |

For guard switches XCS MP	XCS $\mathbf{Z 8 1}$	XCS Z84	XCS Z83	XCS $\mathbf{Z 8 5}$	
Weight (kg)	0.015	0.025	0.085	0.085	
Separate components					
Description	Unit refer				Weight kg
Blanking plugs for operating head slot (Sold in lots of 10)	XCS Z29				0.005

(1) Blanking plug for operating head slot included with switch.
(2) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(3) Basic reference, to be completed: replace the dot by 2 for a 2 m long cable, by 5 for a 5 m long cable or by 10 for a 10 m long cable Example: XCS MP59L• becomes XCS MP59L10 for a switch with a 10 m long cable.

Dimensions:	Setting-up: page 41	Schemes page 42
page 43		

Safety detection solutions

Key operated switches
Plastic, fixed head, type XCS MP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m

Dimensions

XCS MP
XCS Z81

(1) $\varnothing 7.6$, length 2,5 or 10 m .

XCS Z84

XCS Z83

(1) 2 elongated holes $\varnothing 4.2 \times 6$.

XCS Z85

(1) 2 elongated holes $\varnothing 4.2 \times 6$.

Safety detection solutions

Key operated switches
Plastic, fixed head, type XCS MP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m

Functional diagrams

Contact operation

Safety detection solutions

Key operated switches
Plastic, fixed head, type XCS MP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m

Schemes Note: These schemes are given as examples only, the designer must refer to the relevant safety standards for guidance.
Wiring up to PL=b, category 1 conforming to EN/SO 13849-1
Example with 3-pole $2 \mathrm{NC}+1 \mathrm{NO}$ contact and protection fuse to prevent shunting of the NC contact, either by cable damage or by tampering.

(1) Signalling contact

Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061. Wiring method used in conjunction with Preventa safety module.
(The guard switch should be used in conjunction with a safety limit switch to give electrical/mechanical redundancy).
Method for machines with quick rundown time (low inertia)
Locking or interlocking device based on the principle of redundancy and self-monitoring.
The safety modules ensure these functions.

[^1]
Safety detection solutions

Key operated switches

Plastic, turret head (1), types XCS PA and XCS TA 1 or 2 cable entries

References of switches without actuator $(\Theta$ NC contact with positive opening operation) with 1 or 2 cable entries tapped ISO M16 $\times 1.5$

2-pole 1 NC + 1 NO (2) break before make, slow break		XCS PA592	Θ	-	
2-pole 1 NC + 1 NO (2) snap action	$\begin{aligned} & m \mid \\ & m \\ & \pm \\ & \pm \\ & \hline \end{aligned}$	XCS PA192	Θ		
2-pole 1 NO + 1 NC (2) make before break, slow break		XCS PA692	Θ	-	
2-pole 2 NC (2) slow break		XCS PA792	Θ	-	
$\text { 2-pole } 2 \text { NC (2) }$ snap action		XCS PA292	Θ		
3-pole 1 NC + 2 NO (2) break before make, slow break		XCS PA892	Θ	XCS TA592	Θ
3-pole 1 NC + 2 NO (2) snap action		XCS PA392	Θ	-	
3-pole 2 NC + 1 NO (2) break before make, slow break		XCS PA992	Θ	XCS TA792	Θ
$\begin{aligned} & \text { 3-pole } 2 \mathrm{NC}+1 \text { NO (2) } \\ & \text { snap action } \end{aligned}$		XCS PA492	Θ	-	
$\text { 3-pole } 3 \text { NC (2) }$ slow break		-		XCS TA892	Θ
Weight (kg)		0.110		0.160	

References of switches without actuator $(\Theta$ NC contact with positive opening operation) with 1 or 2 cable entries tapped Pg 11 or $1 / 2$ " NPT
To order a switch with 1 or 2 cable entries for $n^{\circ} 11(\mathrm{Pg} 11)$ cable gland (clamping capacity 7 to 10 mm), replace the last number (2) by 1 in the selected reference. Example: XCS PA592 becomes XCS PA591.
To order a switch with 1 or 2 cable entries for $1 / 2^{\prime \prime}$ NPT conduit (one $n^{\circ} 11$ tapped entry fitted with metal adaptor DE9 RA1012), replace the last number (2) by 3 in the selected reference. Example: XCA TA592 becomes XCS TA593
Complementary characteristics not shown under general characteristics (page 38)

Actuation speed	Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$			
Resistance to forcible withdrawal of actuator	XCS PA, XCS TA: 10 N (50 N using actuators XCS Z12 or XCS Z13 together with guard retaining device XCS Z21)			
Mechanical durability	XCS PA, XCS TA: > 1 million operating cycles			
Maximum operating rate	For maximum durability: 600 operating cycles per hour			
Minimum force for positive opening	$\geqslant 15 \mathrm{~N}$			
Cable entry	XCS PA: 1 entry tapped M16 $\times 1.5$ for ISO cable gland. XCS TA: 2 entries tapped M16 $\times 1.5$ for ISO cable gland.			
Materials	Body and head: polyamide PA66, fibreglass impregnated			
References of accessories				
\%	Description	For use with	Unit reference	Weight kg
	Blanking plugs for operating head slot (Sold in lots of 10)	XCS PA, XCS TA	XCS $\mathbf{Z 2 8}$	0.050
	Padlocking device to prevent insertion of actuator, for up to 3 padlocks (padlocks not included)	XCS PA, XCS TA	XCS 291	0.053
XCS Z91 XCS Z200	Actuator centring device (3) (Fixing screws included)	XCS PA, XCS TA	XCS Z200	0.022

(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch. \quad (3) Do not use with XCS Z91.
(2) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.

Other versions: please consult our Customer Care Centre.

References (continued), dimensions

Safety detection solutions

Key operated switches
Plastic, turret head, types XCS PA and XCS TA 1 or 2 cable entries

References of actuators and guard retaining device

Description	Straight actuator	Actuator with wide fixing (1)		Pivoting actuator	Right-angled actuator	Guard retaining device (2)
For key operated switches XCS PA, TA	XCS $\mathbf{Z 1 1}$	XCS Z12	XCS Z15	XCS Z13	XCS Z14	XCS Z21
Weight (kg)	0.015	0.015	0.012	0.085	0.025	0.080

(1) 2 actuator lengths, XCS Z12: $L=40 \mathrm{~mm}, X C S ~ Z 15: L=29 \mathrm{~mm}$.
(2) Only for use with key operated switches XCS PA and XCS TA (without actuator centring device XCS Z200) used in conjunction with actuators XCS Z12, XCS Z13 or XCS Z15.

Safety detection solutions

Key operated switches
Plastic, turret head, types XCS PA and XCS TA 1 or 2 cable entries

$\mathrm{R}=$ minimum radius

References:	Schemes:
page 45	page 47

Safety detection solutions

Key operated switches
Plastic, turret head, types XCS PA and XCS TA
1 or 2 cable entries

Contact operation

- ClosedOpen

Unstable

Setting-up

Functional diagrams

XCS TA8••

Contact operation
Closed
\square Open
Unstable

Schemes Note: These schemes are given as examples only, the designer must refer to the relevant safety standards for guidance. Wiring to PL=b, category 1 conforming to EN/ISO 13849-1
Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact and protection fuse to prevent shunting of the NC contact, either by cable damage or by tampering.

Wiring to PL=d, category 3 conforming to

EN/ISO 13849-1

Example with 2-pole 1 NC +1 NO contact with mixed redundancy of the contacts and the associated control relays. To activate K1, it is necessary to remove and re-insert the actuator when the supply is switched on.

(1) Signalling contact.

Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061
Wiring method used in conjunction with safety module
(The key operated switch should be used in conjunction with a safety limit switch to give electrical/mechanical redundancy)

Method for machines with quick rundown time (low inertia)

Locking or interlocking device based on the principle of redundancy and self-monitoring
The safety modules ensure these functions.

References, characteristics

Safety detection solutions

Key operated switches
Metal, turret head ${ }_{(1)}$, types XCS A, XCS B and XCS C 1 cable entry

Type of switch	Without locking of actuator			With locking of actuator, manual unlocking (2)					
LED indication on opening of NC contacts	Without	1 orange LED $24 / 48 \mathrm{~V} \sim$	1 orange LED $110 /$ $240 \mathrm{~V} \sim$	Without	1 orange LED $24 /$ $48 \mathrm{~V} \approx$	1 orange LED 110/ 240 V~	Without	1 orange LED 24/48 V \sim	1 orange LED $110 /$ $240 \mathrm{~V} \sim$
References of switches without actuator (Θ NC contact with positive opening operation) with 1 cable entry tapped ISO M20 x 1.5									
3-pole 1 NC + 2 NO break before make, slow break (3)	XCS A502	XCS A512	XCS A522	XCS B502	XCS B512	XCS B522	XCS C502	XCS C512	XCS C522
3-pole 2 NC + 1 NO break before make, slow break (3)	XCS A702	XCS A712	XCS A722	XCS B702	XCS B712	XCS B722	XCS C702	XCS C712	XCS C722
	XCS A802	-	-	XCS B802	-	-	XCS C802	-	-
Weight (kg)	0.440	0.440	0.440	0.475	0.475	0.475	0.480	0.480	0.480

To order a switch with a Pg 13.5 cable entry, replace the last number (2) by 1 in the selected reference.
Example: XCS A502 becomes XCS A501.

References of switches without actuator (Θ NC contact with positive opening operation)

 with 1 cable entry tapped 1/2" NPTTo order a switch with a $1 / 2$ " NPT cable entry, replace the last number (2) by $\mathbf{3}$ in the selected reference.
Example: XCS A502 becomes XCS A503.

Complementary characteristics not shown under general characteristics (page 38)

Actuation speed	Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$
Resistance to forcible withdrawal of actuator	XCS B and XCS C: 1500 N
Mechanical durability	XCS A: >1 million operating cycles XCS B and XCS C: 0.6 million operating cycles
Maximum operating rate	For maximum durability: 600 operating cycles per hour
Minimum force for extraction of actuator	$\geqslant 20 \mathrm{~N}$
Cable entry	XCS A, XCS B, XCS C: 1 cable entry Entry tapped ISO M20 x 1.5, clamping capacity 7 to 13 mm Materials References of actuators

Description	Straight actuator	Actuator with wide fixing	Pivoting actuator	Latch for sliding doors
For key operated switches XCS A, B, C, E	XCS Z01	XCS Z02	XCS Z03	XCS Z05
Weight (kg)	0.020	0.020	0.095	0.600

(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) Unlocking by pushbutton for XCS B $\bullet \bullet$ and by key operated lock for XCS C $\bullet \bullet \bullet$ (2 keys included with switch).
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.

Other versions: please consult our Customer Care Centre.

Dimensions:	Schemes:
page 49	page 51

References, dimensions

Safety detection solutions

Key operated switches
Metal, turret head, types XCS A, XCS B and XCS C 1 cable entry

Safety detection solutions

Key operated switches
Metal, turret head, types XCS A, XCS B and XCS C 1 cable entry

Fixing axis \% related to actuator.
Operating radius required for actuator
XCS Z 21

XCS Z03

$R=$ minimum radius

References:	Schemes: page 48
	page 51

Safety detection solutions

schemes
Key operated switches
Metal, turret head, types XCS A, XCS B and XCS C 1 cable entry

Schemes Note: These schemes are given as examples only, the designer must refer to the relevant safety standards for guidance.

Wiring up to PL=b, category 1 conforming to EN/SO 13849-1

Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact and protection fuse to prevent shunting of the NC contact, either by cable damage or by tampering.

(1) Signalling contact

Wiring up to PL=d, category 3 conforming to EN/ISO 13849-1

Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact with mixed redundancy of the contacts and the associated control relays. To activate K1, it is necessary to remove and re-insert the actuator when the supply is switched on.

H1: "actuator not inserted" indicator

Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061. Wiring method used in conjunction with Preventa safety module. (The key operated switch should be used in conjunction with a safety limit switch to give electrical/mechanical redundancy).
Method for machines with quick rundown time (low inertia)
Locking device based on the principle of redundancy and self-monitoring.
The safety modules ensure these functions.

[^2]
Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCS LF
Plastic, type XCS LE

Metal, type XCS LF

Safety interlock switches operating by actuator

Plastic, type XCS LE

Safety interlock switches operating by actuator

Pages 58 and 59

Environment characteristics			
Guard switch type		XCS LF (metal)	XCS LE (plastic)
Conformity to standards	Products	EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 n 14	
	Machine assemblies	EN/IEC 60204-1, EN/ISO 14119, EN/ISO 12100	
Product certifications		UL (1), CSA, TÜV (pending)	
Maximum safety level (2)		PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061	
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		5500000 (value given for a service life of 20 years, limited by mechanical or contact wear)	
Protective treatment		Standard version: "TC"	
Ambient air temperature	For operation	$-25 \ldots+60^{\circ} \mathrm{C}$	
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}$	
Vibration resistance		$5 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to EN/IEC 60068-2-6	
Shock resistance		10 gn (duration 11 ms) conforming to EN/IEC 60068-2-27	
Electric shock protection		Class I conforming to EN/IEC 60536	Class II conforming to EN/IEC 60536
Degree of protection		IP 66 and IP 67 (IP 66 for XCS LF $\bullet \bullet \bullet \bullet 4 \bullet \bullet$ and for XCS LF $\bullet \bullet \bullet \bullet 6 \bullet \bullet$) conforming to EN/IEC 60529 and EN/IEC 60947-5-1 (3)	
Connection		3 cable entries tapped M20 $\times 1.5$ for ISO cable gland. Clamping capacity 7 to 13 mm or entries tapped for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit or 1 M23 connector output, $15+1$ PE or $18+1$ PE $24 \mathrm{~V}=$-. versions.	
Material		Zamak case	Polyamide case
		Actuators (all types): steel XC60, surface treated	
		(3) Live parts of these switches are protected against the penetration of dust and water. However, when installing take all necessary precautions to prevent the penetration of solid bodies, or liquids with a high dust content, into the actuator aperture. Not recommended for use in saline atmospheres.	

Safety detection solutions

Safety interlock switches

by actuator, with solenoid, turret head
Metal, type XCS LF
Plastic, type XCS LE

Switching capacity

conforming to EN/IEC 60947-5-1
Appendix C
Utilization categories AC-15 and DC-13

```
Switching capacity 1:
C300 240 V 0.75 A
R300 250 V 0.1 A
Switching capacity 2 :
C300 120 V 1.5A
R300 \(125 \mathrm{~V} \quad 0.22 \mathrm{~A}\)
```


References, characteristics

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head (1)
With 3 cable entries
Metal, type XCS LF

Type of switch
LED indication
Power supply for the solenoid and the LEDs
Type of contact on solenoid

References of switches without actuator $\Theta \mathrm{NC}$ contact with positive opening operation) with 3 cable entries tapped ISO M20 x 1.5

2-pole contact 1 NC + 1 NO break before make, slow break (3)		XCS LF2525312	-	-	-	-
2-pole contact 2 NC simultaneous, slow break (3)		XCS LF2725312	XCS LF2727312	-	-	-
3-pole contact 1 NC + 2 NO break before make, slow break (3)		-	-	XCS LF3535312	-	-
3-pole contact 2 NC + 1 NO break before make, slow break (3)		-	-	-	XCS LF3737312	-
3-pole contact 3 NC simultaneous, slow break (3)		-	-	-	-	XCS LF3838312
Weight (kg)		1.100	1.100	1.100	1.100	1.100

Solenoid and LED characteristics

Load factor	100%
Rated operational voltage (4)	$24 \mathrm{~V}=$ or \sim or $120 \mathrm{~V} \sim$ or $230 \mathrm{~V} \sim$
Voltage limits	Conforming to EN/IEC $60947-1$
Consumption	$-15 \%,+10 \%$ of the rated operational voltage (including ripple on $=--)$

References of complete switches with solenoid supply voltage of 120 V or 230 V
To order a switch with a solenoid voltage of $110 / 120 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 3.
Example: XCS LF3535312 becomes XCS LF3535332.
To order a switch with a solenoid voltage of $220 / 240 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 4.
Example: XCS LF3535312 becomes XCS LF3535342.

References of switches with locking on energization and unlocking on de-energization

To order a guard switch with locking on energization and unlocking on de-energization of the solenoid, replace the $5^{\text {th }}$ number in the selected reference with 5 . Example: XCS LF3535312 becomes XCS LF3535512

References of complete switches with 3 cable entries tapped for $1 / 2$ " NPT conduit

To order a switch with $31 / 2^{\prime \prime}$ NPT cable entries, replace the last number in the reference with 3.
Example: XCS LF3535312 becomes XCS LF3535313.

References of actuators and separate parts

See page 60.
(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) A key operated lock (2 keys included with switch) enables forced opening of the interlocking mechanism, by authorized personnel, allowing withdrawal of the actuator and subsequent opening of the NC safety contacts.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(4) Common power supply for the solenoid and the LEDs.

Other versions: consult your Customer Care Centre.

Presentation: page 52	Characteristics: page 53	Dimensions: page 63	Schemes: page 66
54		Schneider	

References， characteristics

Safety detection solutions

Safety interlock switches

by actuator，with solenoid，turret head（1）
Connector output
Metal，type XCS LF

Type of switch	Locking on de－energization and unlocking on energization of solenoid（2）				
LED indication	Orange LED：＂guard open＂indication Green LED：＂guard closed and locked＂signalling				
Power supply for the solenoid and the LEDs	$24 \mathrm{~V}=-$ or $\sim(50 / 60 \mathrm{~Hz}$ on \sim ）				
Type of contact on solenoid	1 NC＋ 1 NO break before make		$1 \mathrm{NC}+2 \mathrm{NO}$ break before make	$2 \mathrm{NC}+1 \mathrm{NO}$ break before make	3 NC simultaneous
References of switches without actuator $\Theta \mathrm{NC}$ contact with positive opening operation）， 16－pin（4 contacts）or 19－pin（6 contacts）M23 connector output					
2－pole contact 1 NC＋ 1 NO break before make，slow break（3）	XCS LF252531M2	－	－	－	－
2－pole contact 2 NC simultaneous，slow break（3）	XCS LF272531M2	XCS LF272731M2	－	－	－
3-pole contact $1 \text { NC + } 2 \text { NO }$ break before make，slow break（3）	－	－	XCS LF353531M3 Θ	－	－
3 －pole contact 2 NC＋ 1 NO break before make，slow break（3）	－	－	－	XCS LF373731M3	－
3－pole contact 3 NC simultaneous，slow break（3）	－	－	－	－	XCS LF383831M3
Weight（kg）	1.100	1.100	1.100	1.100	1.100
Solenoid and LED characteristics					
Load factor	100\％				
Rated operational voltage（4）	$24 \mathrm{~V}=$－or \sim				
Voltage limits Conforming to EN／IEC 60947－1	$-15 \%,+10 \%$ of the rated operational voltage（including ripple on－－－）				
Consumption	$<5.4 \mathrm{~W}$ at $20^{\circ} \mathrm{C}$ and max．voltage				

To order a guard switch with locking on energization and unlocking on de－energization of the solenoid，replace the $5^{\text {th }}$ number in the selected reference with 5 ． Example：XCS LF272731M2 or XCS LF353531M3 becomes XCS LF272751M2 or XCS LF353551M3．

References of actuators and separate parts

See page 60.
（1）Head adjustable in 90° steps throughout 360° ．Blanking plug for operating head slot included with switch．
（2）A key operated lock（two keys included with switch）enables forced opening of the interlocking mechanism，by authorized personnel，allowing withdrawal of the actuator and subsequent opening of the NC safety contacts．
（3）Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch．
（4）Common power supply for the solenoid and the LEDs．

Note ：Due to existing cable connections and to ensure your personal safety，safety screws have been used in front of the product to prevent unauthorized access．
Other versions：consult your Customer Care Centre．

A ：Available $4^{\text {th }}$ quarter 2011.

References, characteristics (continued)

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head (1)
With 3 cable entries
Metal, type XCS LF

Type of switch	Locking on de-energization and unlocking on energization of solenoid (2) or in emergency by mushroom head pushbutton (3)
LED indication	Orange LED: "guard open" indication Green LED: "guard closed and locked" indication
Power supply for the solenoid and the LEDs	$24 \mathrm{~V}=-\mathrm{or} \sim(50 / 60 \mathrm{~Hz}$ on \sim)
Type of contact on solenoid	
References of switches without actuator $\Theta N C$ contact with positive opening operation) with trigger action mushroom head pushbutton, diameter 40 mm , "turn to release" reset, with 3 entries tapped ISO M20 x 1.5	
3-pole contact 1 NC + 2 NO break before make, slow break (4)	$\left\|\begin{array}{l}\text { XCS LF3535412 } \\ \boldsymbol{\wedge}\end{array}\right\|-$
3-pole contact $2 N C+1 N O$ break before make, slow break (4)	$-\quad \|$XCS LF3737412
Weight (kg)	
Solenoid and LED characteristics	
Load factor	100\%
Rated operational voltage (5)	$24 \mathrm{~V}=-$ or \sim or $120 \mathrm{~V} \sim$ or $230 \mathrm{~V} \sim$
Voltage limits Conforming to EN/IEC 60947-1	$-15 \%,+10 \%$ of the rated operational voltage (including ripple on ---)
Consumption	$<5.4 \mathrm{~W}$ at $20^{\circ} \mathrm{C}$ and max. voltage
References of switches with trigger action mushroom head pushbutton, diameter 40 mm , key no. 455 reset	

To order a switch with trigger action mushroom head pushbutton, key no. 455 release, diameter 40 mm at the rear of the product, replace the $5^{\text {th }}$ number in the selected reference with 6 .
Example: XCS LF3535412 becomes XCS LF3535612.

References of complete switches with solenoid supply voltage of 120 V or 230 V

To order a switch with a solenoid voltage of $110 / 120 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 3.
To order a switch with a solenoid voltage of $220 / 240 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 4.

References of complete switches with 3 cable entries tapped for 1/2" NPT conduit

To order a switch with $31 / 2^{\prime \prime}$ NPT cable entries, replace the last number in the reference with 3.
Example: XCS LF3737412 becomes XCS LF3737413.

References of actuators and separate parts

See page 60.
(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) A key operated lock (2 keys included with switch) enables forced opening of the interlocking mechanism, by authorized personnel, allowing withdrawal of the actuator and subsequent opening of the NC safety contacts.
(3) Trigger action, diameter 40 mm , "turn to release" or "key no. 455 " reset type.
(4) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(5) Common power supply for the solenoid and the LEDs.

Other versions: consult your Customer Care Centre.
\mathbf{A} : Available $4^{\text {th }}$ quarter 2011.
\(\left.$$
\begin{array}{lll}\hline \begin{array}{l}\text { Presentation: } \\
\text { page 52 }\end{array} & \begin{array}{l}\text { Characteristics: } \\
\text { page 53 }\end{array}
$$ \& Dimensions:

\hline 56 \& \& page 63\end{array}\right]\)| Schemes: |
| :--- |
| Schneider |
| Page 66 |

Safety detection solutions

Safety interlock switches
by actuator，with solenoid，turret head（1）
Connector output
Metal，type XCS LF

Type of switch \quad| Locking on de－energization and unlocking on energization of solenoid（2）or |
| :--- |
| in emergency by mushroom head pushbutton（3） |

LED indication	Orange LED：＂guard open＂indication Green LED：＂guard closed and locked＂indication	
Power supply for the solenoid and the LEDs	$24 \mathrm{~V}=$－or $\sim(50 / 60 \mathrm{~Hz}$ on～）	
Type of contact on solenoid	$1 \mathrm{NC}+2 \mathrm{NO}$ break before make	$2 \mathrm{NC}+1 \mathrm{NO}$ break before make

References of switches without actuator $(\Theta$ NC contact with positive opening operation） with trigger action mushroom head pushbutton，diameter 40 mm ，＂turn to release＂reset，19－pin M23 connector output（6 contacts）

3－pole contact 1 NC＋ 2 NO break before make，slow break（4）	XCS LF353541M3	－
3－pole contact 2 NC＋ 1 NO break before make，slow break（4）	－	XCS LF353541M3
Weight（kg）	1.220	1.220
Solenoid and LED characteristics		
Load factor	100\％	
Rated operational voltage（5）	$24 \mathrm{~V}=-\mathrm{or} \sim$	
Voltage limits Conforming to EN／IEC 60947－1	$-15 \%,+10 \%$ of the	（ncluding ripple on－－－）
Consumption	$<5.4 \mathrm{~W}$ at $20^{\circ} \mathrm{C}$ and	

References of switches with trigger action mushroom head pushbutton，diameter 40 mm ，key no． 455 reset

To order a switch with trigger action mushroom head pushbutton，unlocked by key no． 455 ，diameter 40 mm at the rear of the product，replace the $5^{\text {th }}$ number in the selected reference with 6
Example：XCS LF353541M3 becomes XCS LF353561M3

References of actuators and separate parts

See page 60.
（1）Head adjustable in 90° steps throughout 360° ．Blanking plug for operating head slot included with switch．
（2）A key－operated lock（two keys included with switch）enables forced opening of the interlocking mechanism，by authorized personnel，allowing withdrawal of the actuator and subsequent opening of the NC safety contacts．
（3）Trigger action，diameter 40 mm ，＂turn to release＂or＂key no． 455 ＂reset type．
（4）Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch．
（5）Common power supply for the solenoid and the LEDs．
Note ：Due to existing cable connections and to ensure your personal safety，safety screws have been used in front of the product to prevent unauthorized access．
Other versions：consult your Customer Care Centre．

References, characteristics

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head (1)
With 3 cable entries, double insulated Plastic, type XCS LE

Type of switch
LED indication
Power supply for the solenoid and the LEDs
Type of contact on solenoid

References of switches without actuator $(\Theta$ NC contact with positive opening operation) with 3 cable entries tapped ISO M20 x 1.5
2-pole contact

1 NC + 1 NO
break before make, slow break (3)

$\begin{aligned} & \text { 2-pole contact } \\ & \text { 2 NC } \\ & \text { simultaneous, slow break (3) } \end{aligned}$		-	XCS LE2727312	-	-	-
3-pole contact 1 NC + 2 NO break before make, slow break (3)		-	-	XCS LE3535312	-	-
3 -pole contact 2 NC + 1 NO break before make, slow break (3)		-	-	-	XCS LE3737312	-
3-pole contact 3 NC simultaneous, slow break (3)		-	-	-	-	XCS LE3838312
Weight (kg)		0.530	0.530	0.530	0.530	0.530

Solenoid and LED characteristics

Load factor	100%	
Rated operational voltage (4)	$24 \mathrm{~V}=$ or \sim or $120 \mathrm{~V} \sim$ or $230 \mathrm{~V} \sim$	
Voltage limits	Conforming to EN/IEC $60947-1$	$-15 \%,+10 \%$ of the rated operational voltage (including ripple on $-\mathrm{-}$)

References of complete switches with solenoid supply voltage of 120 V or 230 V
To order a switch with a solenoid voltage of $110 / 120 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 3.
Example: XCS LE2525312 becomes XCS LE2525332.
To order a switch with a solenoid voltage of $220 / 240 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 4.
Example: XCS LE2525312 becomes XCS LE2525342.

References of switches with locking on energization and unlocking on de-energization

To order a guard switch with locking on energization and unlocking on de-energization of the solenoid, replace the $5^{\text {th }}$ number in the selected reference with 5
Example: XCS LE2525312 becomes XCS LE2525512

References of complete switches with three cable entries tapped for $1 / 2$ " NPT conduit

To order a switch with $1 / 2^{\prime \prime}$ NPT cable entries, replace the last number in the reference with 3 .
Example: XCS LE2727312 becomes XCS LE2727313.

References of actuators and separate parts

See page 60.
(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) A special tool included with the guard switch enables forced opening of the interlocking mechanism, by authorized personnel, allowing withdrawal of the actuator and subsequent opening of the NC safety contacts.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(4) Common power supply for the solenoid and the LEDs.

Other versions: consult your Customer Care Centre.

Presentation: page 52	Characteristics: page 53	Dimensions: page 63
58		Schemes:
Scheider		

References, characteristics

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head (1)
Connector output, double insulated
Plastic, type XCS LE

LED indication	Orange LED: "guard open" indication Green LED: "guard closed and locked" indication				
Power supply for the solenoid and the LEDs	$24 \mathrm{~V}=$ - or $\sim(50 / 60 \mathrm{~Hz}$ on $\sim)$				
Type of contact on solenoid	$1 \mathrm{NO}+1 \mathrm{NC}$ break before make	$2 \mathrm{NC}$ simultaneous	1 NC + 2 NO break before make	$2 N C+1 N O$ break before make	$3 N C$ simultaneous

References of switches without actuator $\Theta \mathrm{NC}$ contact with positive opening operation),
16-pin (4 contacts) or 19-pin (6 contacts) M23 connector output

2-pole contact 1 NC + 1 NO break before make, slow break (3)	XCS LE252531M2 Θ	-	-	-	-
$\begin{array}{ll} \text { 2-pole contact } \\ \text { 2 NC } \\ \text { simultaneous, slow break (3) } & \checkmark-5 \end{array}$	-	XCS LE272731M2	-	-	-
3-pole contact 1 NC + 2 NO break before make, slow break (3)	-	-	XCS LE353531M3 Θ	-	-
3-pole contact $2 \mathrm{NC}+1 \mathrm{NO}$ break before make, slow break (3)	-	-	-	XCS LE373731M3	-
3-pole contact 3 NC simultaneous, slow break (3)	-	-	-	-	XCS LE383831M3
Weight (kg)	0.530	0.530	0.530	0.530	0.530
Solenoid and LED characteristics					
Load factor	100\%				
Rated operational voltage (4)	$24 \mathrm{~V}=$ - or \sim				
Voltage limits Conforming to EN/IEC 60947-1	$-15 \%,+10 \%$ of the rated operational voltage (including ripple on ---)				
Consumption	$<5.4 \mathrm{~W}$ at $20^{\circ} \mathrm{C}$ and max. voltage				

References of switches with locking on energization and unlocking on de-energization

To order a guard switch with locking on energization and unlocking on de-energization of the solenoid, replace the $5^{\text {th }}$ number in the selected reference with 5. Example: XCS LE252531M2 becomes XCS LE252551M2 and XCS LE353531M3 becomes XCS LE353551M3.

References of actuators and separate parts

See page 60.
(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) A special tool included with the guard switch enables forced opening of the interlocking mechanism, by authorized personnel, allowing withdrawal of the actuator and subsequent opening of the NC safety contacts.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(4) Common power supply for the solenoid and the LEDs.

Note : Due to existing cable connections and to ensure your personal safety, safety screws have been used in front of the product to prevent unauthorized access.
Other versions: consult your Customer Care Centre.

[^3]
Safety detection solutions
 Safety interlock switches
 by actuator, with solenoid, turret head
 Metal, type XCS LF and plastic, type XCS LE
 Accessories

XCS 201

XCS Z02

Pivoting actuator

XCS LF,
 XCS LE

Latch for sliding doors	XCS LF,	XCS Z05	0.600
	XCS LE		

\(\left.$$
\begin{array}{lllr}\hline \text { Separate parts } & \text { Used for } & \begin{array}{l}\text { Unit } \\
\text { reference }\end{array}
$$ \& Weight

\hline Description\end{array}\right]\)| Blanking plugs for operating
 head slot (Sold in lots of 10) | XCS LF,
 XCS LE | XCS Z30 |
| :--- | :--- | :--- |

References (continued), characteristics, dimensions, connections

Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCS LF and plastic, type XCS LE Cabling accessories

M23 connectors							
Characteristics							
Type of connection		Screw threaded (metal clamping ring)					
Degree of protection		IP 65 (with clamping ring correctly tightened)					
Ambient air temperature		$-25 \ldots+110^{\circ} \mathrm{C}$					
Connection		To solder terminals. Maximum conductor c.s.a.: $1 \mathrm{~mm}^{2}$ Cable gland: no. 13 metal (Pg 13.5) Clamping capacity: 9 to 12 mm					
LED signalling		-					
Nominal voltage		$60 \mathrm{~V} \sim, 75 \mathrm{~V}=-$					
Nominal current		7.5 A					
Insulation resistance		$>10^{12} \Omega$					
Contact resistance		$\leq 5 \mathrm{~m} \Omega$					
References							
		Type of connector	Number of contacts	Cable connection	Type	Reference	Weight kg
	(Female, M23	16	To solder terminals	Straight	XZ CC23FDM160S	0.080
					Elbowed	XZ CC23FCM160S	0.150
			19	To solder terminals	Straight	XZ CC23FDM190S	0.080
					Elbowed	XZ CC23FCM190S	0.150

References (continued), characteristics, dimensions, connections

Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCS LF and plastic, type XCS LE
Cabling accessories

Connector adaptors
 Characteristics

Type of connection	Screw threaded					
Degree of protection	IP 67					
Ambient air temperature	$-25 \ldots+80^{\circ} \mathrm{C}$					
Connection	Via 100 mm long wires					
Conductor c.s.a.	XZC E03M2316M: $16 \times 0.28 \mathrm{~mm}^{2}$ XZC E03M2319M: $19 \times 0.28 \mathrm{~mm}^{2}$					
LED signalling	-					
Max. voltage	$36 \mathrm{~V} \sim=$					
Nominal current	4 A					
Insulation resistance	$>10^{9} \Omega$					
Contact resistance	$\leq 5 \mathrm{~m} \Omega$					
References						
	Adaptor type	Number of contacts	Size of tapped hole	Number of wires	Reference	Weight kg
	M23, male	5	M20 x 1.5	16	XZC E03M2316M	0.100
	Metal body			19	XZC E03M2319M	0.100

Dimensions

XZ CE20M231M

(1) $M 20 \times 1.5$

Connections

XZ CE 20M2316M

XZ CE20M2319M

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCS LF
Plastic, type XCS LE

Plastic safety interlock switches XCS LE•••••••

[^4]Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCS LF
Plastic, type XCS LE

Actuation radius

XCS Z01

XCS Z02

XCS Z03

$\mathrm{R}=$ minimum radius

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCS LF
Plastic, type XCS LE

Operation Functional diagrams XCS LF/LE25•••

Connections

Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061. Wiring method used in conjunction with Preventa safety module (the safety interlock switch should be used in conjunction with a safety limit switch to achieve electrical/mechanical redundancy).
Method for machines with long rundown time (high inertia)

Interlocking device for actuator fitted on guard and zero speed detection.

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCS LF
Plastic, type XCS LE

Wiring up to PL=b, category 1 conforming to

 EN/ISO 13849-1Wiring example with protection fuse to prevent shunting of the NC contact, either by cable damage or by tampering.
1 NC +1 NO locking on de-energization
and 1 NC + 1 NO auxiliary contacts
XCS LF/LE25253••

E1-E2: Solenoid supply
13-14: Safety contact, available for redundancy
13-X2/E2: LED (orange): actuator withdrawn
41-X1/E2: LED (green): actuator inserted and locked
22-41: Safety pre-wiring obligatory
S1: Manual release button
X: Unlocking signal

Wiring up to PL=d, category 3 conforming to EN/ISO 13849-1

Wiring example with redundancy for the guard switch contacts, without monitoring or redundancy in the power circuit.
$2 \mathrm{NC}+1$ NO locking on de-energization
and 2 NC + 1 NO auxiliary contacts
XCS LF/LE37373••

E1-E2: Solenoid supply
21-22 and 31-32: Safety contacts, available for redundancy
13-X2/E2: LED (orange): actuator withdrawn
51-X1/E2: LED (green): actuator inserted and locked
22-41 and 32-51: Safety pre-wiring obligatory
S1: Manual release button
X : Zero speed or unlocking signal

Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCS LF
Plastic, type XCS LE

XCS LF/LE2727••

19-pin M23 connectors XCS LF/LE3535••

XCS LF/LE3737••

XCS LF/LE3838•e

XCS LF/LE3837••

Presentation

Safety detection solutions

Coded magnetic switches
Plastic

XCS DMC

Page 70
Page 71

Rectangular, standard: $88 \times 25 \times 13$

Pre-cabled connection
XCS DMP

Page 70

Page 71

Cylindrical, diameter: 30, length: 38.5
Pre-cabled connection
Connector on flying lead connection

Page 71

Safety detection solutions Coded magnetic switches
 Plastic

Environment			
Conformity to standards	Products		EN/IEC 60947-5-1, UL 508, CSA C22-2 n 14
	Machine assemblies		EN/IEC 60204-1, EN/ISO 14119
Product certifications			UL, CSA, BG
Maximum safety level (1)			PL=e, category 4 conforming to EN/ISO 13849-1 and SIL 3 conforming to EN/IEC 61508
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$			50000000 (value given for a service life of 20 years, limited by mechanical or contact wear)
Protective treatment			Standard version: "TH"
Ambient air temperature	For operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+85$
	For storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$
Vibration resistance			$10 \mathrm{gn} \mathrm{(10..}$.150 Hz) conforming to EN/IEC 60068-2-6
Shock resistance			30 gn (11 ms) conforming to EN/IEC 60068-2-7
Sensitivity to magnetic fields		mT	≥ 0.3
Electric shock protection			Class II conforming to EN/IEC 60536
Degree of protection	Conforming to IEC 60529		IP 66 and IP 67 for coded magnetic switches with pre-cabled connection IP 67 for coded magnetic switches with connector on flying lead connection
Materials			Thermoplastic case (PBT) PVC cable (ROHS)

Contact block characteristics

Rated operational characteristics			Ue: 24 V ---, le: 100 mA max.
Rated insulation voltage (Ui)			Ui: $100 \mathrm{~V}=-$
Rated impulse withstand voltage (U imp)		kV	2.5 conforming to EN/IEC 60947-5-1
Resistance across terminals	Contact with LED	Ω	57
	Contact without LED	Ω	10
Protection (not using safety module)			External cartridge fuse: 500 mAgG (gl)
Connection XCS DMC	2 contact model		Pre-cabled, $4 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M8 connector on 0.15 m flying lead
XCS DMP	2 contact model		Pre-cabled, $4 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector on 0.15 m flying lead
	3 contact model		Pre-cabled, $6 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector on 0.15 m flying lead
XCS DMR	2 contact model		Pre-cabled, $4 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector on 0.15 m flying lead
Contact material			Rhodium
Electrical durability			1.2 million operating cycles
Maximum switching voltage		V	100 --
Switching capacity	Contact with LED	mA	5... 100
	Contact without LED	mA	0.1... 100
Insulation resistance		M Ω	1000
Maximum breaking capacity	Contact with LED	VA	3
	Contact without LED	VA	10
Maximum switching frequency		Hz	150

[^5]References, characteristics

Safety detection solutions
Coded magnetic switches
Plastic, pre-cabled

Type

Rectangular	Standard	Cylindrical
Compact	$88 \times 25 \times 13$	Diameter 30
$51 \times 16 \times 7$	Length 38.5	

References of switches (1) \triangle must be used in conjunction with safety modules XPS (see page 76) Contact states shown are with the magnet positioned in front of the switch

$\begin{aligned} & \text { 2-pole } 1 \text { NC + } 1 \text { NO } \\ & \text { (staggered) } \end{aligned}$		XCS DMC5902	XCS DMP5902	XCS DMR5902
2-pole 2 NC (2) (staggered)		XCS DMC7902	XCS DMP7902	XCS DMR7902
3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ (1 NO staggered)		-	XCS DMP5002	-
3-pole 2 NC + 1 NO (2) (1 NC staggered)		-	XCS DMP7002	-
2-pole 1 NC + 1 NO (staggered)		XCS DMC5912	XCS DMP5912	XCS DMR5912
2-pole 2 NC (2) (staggered)	$[\text { (1) }$	XCS DMC7912	-	XCS DMR7912
3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ (1 NO staggered)		-	XCS DMP5012	-
3-pole $2 \mathrm{NC}+1$ NO (2) (1 NC staggered) \qquad		-	XCS DMP7012	-
Weight (kg)		0.101	0.180	0.146

(1) Magnetic switch + coded magnet (XCS ZC••••).

Switch pre-cabled with 2 m long cable. For other cable lengths, replace the last number of the reference (2) by 5 for a 5 m long cable or by 10 for a 10 m long cable.
Example: rectangular, compact switch with 1 NC +1 NO contacts and 10 m cable becomes XCS DMC59010.
(2) Only to be wired in conjunction with an XPS AF module (see page 77).

Complementary characteristics not shown under general characteristics (page 69)

Operating zone	Sao: 5 mm Sar: 15 mm	Sao: 8 mm Sar: 20 mm	Sao: 8 mm Sar: 20 mm
Approach directions	3 directions	3 directions	1 direction

Accessories (page 72)

Safety detection solutions

Coded magnetic switches

Plastic，connector on flying lead

References of switches（1）\triangle must be used in conjunction with safety modules XPS（see page 76 ） Contact states shown are with the magnet positioned in front of the switch

2－pole 1 NC＋ 1 NO （staggered）		XCS DMC590L01M8	XCS DMP590L01M12	XCS DMR590L01M12
2－pole 2 NC（2） （staggered）		XCS DMC790L01M8	XCS DMP790L01M12	XCS DMR790L01M12
3－pole $1 \mathrm{NC}+2 \mathrm{NO}$ （1 NO staggered）		－	XCS DMP500L01M12	－
3－pole $2 \mathrm{NC}+1$ NO（2） （1 NC staggered）		－	XCS DMP700L01M12	－
2－pole 1 NC＋ 1 NO （staggered）		XCS DMC591L01M8	XCS DMP591L01M12	XCS DMR591L01M12
2－pole 2 NC（2） （staggered）		XCS DMC791L01M8	XCS DMP791L01M12	XCS DMR791L01M12
3－pole $1 \mathrm{NC}+2 \mathrm{NO}$ （NO staggered）		－	XCS DMP501L01M12	－
3－pole $2 \mathrm{NC}+1$ NO（2） （NC staggered）		－	XCS DMP701L01M12	－
Weight（kg）		0.101	0.180	0.146

（1）Magnetic switch＋coded magnet（XCS ZCャャャ・）．
（2）Only to be wired in conjunction with an XPS AF module（see page 77）．

Complementary characteristics not shown under general characteristics（page 69）

| Operating zone | Sao： 5 mm
 Sar： 15 mm | Sao： 8 mm
 Sar： 20 mm | Sao： 8 mm
 Sar： 20 mm |
| :--- | :--- | :--- | :--- | :--- |
| Approach directions | 3 directions | 3 directions | 1 direction |

Accessories（page 72）

References， characteristics

Safety detection solutions

Coded magnetic switches
Accessories

Accessories			
Accessories for coded magnetic switches	XCS DMC•eゃ2 XCS DMCeeッL	XCS DMP•••2 XCS DMP•eッL	XCS DMR••e2 XCS DMReeeL
Fixing clamp	－		XSZ B130
Weight（kg）	－		0.080
Additional coded magnet	XCS ZC1	XCS ZP1	XCS ZR1
Weight（kg）	0.009	0.050	0.018
Non－magnetic shims	XCS ZCC（lot of 2）	XCS ZCP（lot of 2）	XCS ZCR
Weight（kg）	0.008	0.012	0.002

Pre－wired female connectors for connector version switches
Pre－wired connector characteristics

Pre－wired connector type		XZ CP0941Le，XZ CP1041L•	XZ CP29P11L•	XZ CP1141Le，XZ CP1241L•
Type of connection		Screw threaded （metal clamping ring）	Screw threaded （metal clamping ring）	Screw threaded （metal clamping ring）
Number of contacts		4	8	4
Degree of protection		IP 67 （with clamping ring correctly tightened）		
Ambient air temperature	Static	$-35 \ldots+90^{\circ} \mathrm{C}$	$-35 \ldots+90^{\circ} \mathrm{C}$	$-35 \ldots+90^{\circ} \mathrm{C}$
	Dynamic	$-5 \ldots+90^{\circ} \mathrm{C}$	$-5 \ldots+90^{\circ} \mathrm{C}$	$-5 \ldots+90^{\circ} \mathrm{C}$
Cabling		$\varnothing 5.2 \mathrm{~mm}$ cable， wire c．s．a．： $4 \times 0.34 \mathrm{~mm}^{2}$	$\varnothing 5.2 \mathrm{~mm}$ cable， wire c．s．a．： $8 \times 0.25 \mathrm{~mm}^{2}$	$\varnothing 5.2 \mathrm{~mm}$ cable， wire c．s．a．： $4 \times 0.34 \mathrm{~mm}^{2}$
LED signalling		－	－	－
Nominal voltage		$60 \mathrm{~V} \sim, 75 \mathrm{~V}=-$	$30 \mathrm{~V} \sim, 36 \mathrm{~V}=-$	$250 \mathrm{~V} \sim, 300 \mathrm{~V}=-$
Nominal current		4A	2A	4A
Insulation resistance		$>10^{9} \Omega$	$>10^{9} \Omega$	$>10^{9} \Omega$
Contact resistance		$\leqslant 5 \mathrm{~m} \Omega$	$\leqslant 5 \mathrm{~m} \Omega$	$\leqslant 5 \mathrm{~m} \Omega$

References of pre－wired connectors

XZ CP0941L•

XZ CP29P11L•

XZ CP1141L•

XZ CP1041L•

XZ CP1241L•

Function diagrams with XCS DMC59••	magnet present (pre-cabled XCS DMC79••	$\begin{aligned} & \text { rsion) } \\ & \text { XCS DMP50•॰ } \end{aligned}$	xcs omp7o.0
xcs onk590.xCssomp59.0	xcs omr90.ecs mmp9.0		

XCS DMC59**			XCS DMC79ャ๑			XCS DMP50••			XCS DMP70^0		
		Pin (NC): 1/3 (NO): 4/2			$\begin{aligned} & \text { Pin } \\ & \text { (NC): } 1 / 3 \\ & \text { (NC): } 4 / 2 \end{aligned}$			Pin (NC): 1/3 (NO): 4/2 (NO: 6/7			Pin (NC): 1/3 (NC): $4 / 2$ (NO): 6/7
XCS DMR59•๑/XCSDMP59**			XCS DMR79•*/CS DMP79**								
$\begin{gathered} 0 \\ \mid S \mathrm{Sao} \\ \mathrm{~F} \\ \hline \end{gathered}$		Pin (NC): 1/3 (NO): 4/2			$\begin{aligned} & \text { Pin } \\ & \text { (NC): } 1 / 3 \\ & \text { (NC): } 4 / 2 \end{aligned}$						

\square	Contact closed
\square	Contact open
\square	Contact unstable

Sao: assured operating distance.
Sar: assured tripping distance.
Conforming to EN/IEC 60947-5-3

Safety detection solutions
Coded magnetic switches
Plastic

Coded magnetic switches
XCS DMC
Pre-cabled connection

Connector on flying lead connection

(1) Counterbored: $\varnothing 6 \times 3.5 \mathrm{~mm}$.

XCS DMP
Pre-cabled connection

XCS DMR
Pre-cabled connection

(1) Counterbored: $\varnothing 6 \times 3.5 \mathrm{~mm}$. (2) M8 4-pin connector.

Connector on flying lead connection

(1) M12 4 or 6-pin connector.

Connector on flying lead connection

(1) M12 4-pin connector.

Coded magnet for XCS DMC XCS ZC1

(1) Counterbored: $\varnothing 6 \times 3.5 \mathrm{~mm}$.

Coded magnet for XCS DMP
XCS ZP1

Coded magnet for XCS DMR XCS ZR1

(1) $2 \times \varnothing 4.3$, countersunk: $\varnothing 7.5$ at 45°.

Dimensions (continued), schemes, mounting

Safety detection solutions
Coded magnetic switches
Plastic

(1) 2 elongated holes $\varnothing 4 \times 8$

Pre-wired connectors

Schemes

M8 pre-wired connector
XZ CP0941L•

M12 pre-wired connector XZ CP1141Le, XZ CP1241L•

XZ CP29P11L•

XCS	a	b	c	d	e
DMC	40	13 min.	-	81×55	-
DMP	100	10 min.	-	118×55	-
DMR	40	12 min.	>10	$\varnothing 45$	20
		-	>10	$\varnothing 45$	13
		12 min.	<10	-	20
		-	<10	-	17

Non-magnetic shims	
\mathbf{A}	XCS ZCC
\mathbf{B}	XCS ZCP
\mathbf{C}	XCS ZCR

Schemes， connections

Safety detection solutions
Coded magnetic switches
Plastic，pre－cabled

XCS DMP5eゃe with XPS DMB
Wiring to PL＝e，category 4 conforming to EN／ISO 13849－1 and SIL 3 conforming to EN／IEC 61508．Example with 3－pole 1 NC +2 NO（1 NO staggered）contact．

ESC：External start conditions．
XCS DMC5•eゃ，XCS DMP5ゃゃゃ，XCS DMR5・ゃゃ with XPS DME
Wiring to PL＝e，category 4 conforming to EN／ISO 13849－1 and SIL 3 conforming to EN／IEC 61508．Example with 2－pole 1 NC＋ 1 NO（staggered）contact．

$\overline{\text { ESC：External start conditions．}}$

References：
page 70

Schemes, connections (continued)

Safety detection solutions
Coded magnetic switches
Plastic, pre-cabled

Connection of up to 3 magnetic switches, with an LED on one input, with XPS DM• (1)
Wiring up to PL=d, category 3 conforming to EN/ISO 13849-1 and SIL 2 conforming to EN/IEC 61508

Example with 2-pole $1 \mathrm{NC}+1 \mathrm{NO}$ contact

Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact

(1) Input: S11, S12, S13 or S21, S22, S23.

XCS DM•7•eゃ with XPS AF
Wiring up to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL 3 conforming to EN/IEC 61508. Example with 2-pole 2 NC contact

[^6](2) Without start button monitoring.

ESC: External start conditions.

Schemes， connections

Safety detection solutions
Coded magnetic switches
Plastic，connector on flying lead

XCS DMP5eee with XPS DMB
Wiring to PL＝e，category 4 conforming to EN／ISO 13849－1 and SIL 3 conforming to EN／IEC 61508．Example with 3－pole 1 NC +2 NO（1 NO staggered）contact．

ESC：External start conditions．
XCS DMC5•eゃ，XCS DMP5ゃゃゃ，XCS DMR5・ゃゃ with XPS DME
Wiring to PL＝e，category 4 conforming to EN／ISO 13849－1 and SIL 3 conforming to EN／IEC 61508．Example with 2－pole 1 NC＋ 1 NO（staggered）contact．

ESC：External start conditions．

References：

page 70

Schemes, connections (continued)

Safety detection solutions
Coded magnetic switches
Plastic, connector on flying lead

Connection of up to 3 magnetic switches, with an LED on one input, with XPS DM• (1)
Wiring to PL=d, category 3 conforming to EN/ISO 13849-1 and SIL 2 conforming to EN/IEC 61508

Example with 2-pole $1 \mathrm{NC}+1 \mathrm{NO}$ contact

Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact
(1) Input: S11, S12, S13 or S21, S22, S23.

XCS DM•7・ゃゃ with XPS AF
Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL 3 conforming to EN/IEC 61508. Example with 2-pole 2 NC contact

[^7](2) Without start button monitoring

ESC: External start conditions.

Safety detection solutions
Coded magnetic systems

Coded magnetic system

Pre-cabled connection

SIL 2/PL=d, category 3 and SIL 3/PL=e, category 4

XCS DM3791•0/XCS DM4801••

Page 82

Coded magnetic system
M12 connector connection
SIL 2/PL=d, category 3 and SIL 3/PL=e, category 4 XCS DM3791M12/XCS DM4801M12

Page 83

Coded magnetic system type			SIL 2/PL= d, category 3 XCS DM3	SIL 3/PL=e, category 4 XCS DM4
Environment				
Conformity to standards			EN/IEC 60947-5-1; EN/IEC 60947-5-2; EN/IEC 60947-5-3 EN/ISO 14119	
Product certifications			C \in, UL, CSA, TÜV	
Maximum safety level (1)			SIL 2 conforming to EN/IEC 61508,PL=d, category 3 conforming to EN/ISO 13849-1	SIL 3 conforming to EN/IEC 61508, PL=e, category 4 conforming to EN/ISO 13849-1
Reliability data			$\begin{aligned} & \text { MTTF }_{\mathrm{d}}=182 \text { years } \\ & \text { PFH }=3.94 \mathrm{E}^{-9} / \mathrm{PFD}=1.15 \mathrm{E}^{-5} \\ & \mathrm{SFF}=92.5 \% / \mathrm{HFT}=1 \end{aligned}$	
Ambient air temperature	For operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}$	
	For storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$	
Vibration resistance	Conforming to EN/IEC 60068-2-6		$10 \mathrm{gn} \mathrm{(10...500} \mathrm{Hz)}$	
Shock resistance	Conforming to EN/IEC 60068-2-7		$30 \mathrm{gn}, 11 \mathrm{~ms}$	
Sensitivity to magnetic fields		mT	$\leqslant 0.5$	
Electric shock protection	Conforming to EN/IEC 61140		Class III	
Degree of protection	Conforming to EN/IEC 60529		Pre-cabled version: IP 66, IP 67 Connector version: IP 67	
	Conforming to DIN 40050		Pre-cabled version: IP 69K	
Materials			Thermoplastic case (PBT); PVC cable	
Characteristics				
Rated operational characteristics			Ub: $24 \mathrm{~V}=-\mathrm{+}$ + $10 \%-20 \%$	
Rated insulation voltage (Ui)			Ui: 36 V ---	
Rated impulse withstand voltage (U imp)	Conforming to EN/IEC 60947-5-1	kV	2.5	
Integrated output protection			Overload and short-circuit protection	
Connection	Conforming to EN/IEC 60947-5-2-A3 and EN/IEC 61076		Pre-cabled, $6 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector (A coding)	Pre-cabled, $8 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector (A coding)
Cable diameter		mm	$6.1+/-0.3$	
Cable resistance		$\mathrm{m} \Omega / \mathrm{m}$	90	
Safety outputs OSSD (Output Signal Switching Devices)			2 PNP type (NO) solid-state outputs, $1.5 \mathrm{~A}\left(2 \mathrm{~A}\right.$ up to $\left.60^{\circ} \mathrm{C}\right) 24 \mathrm{~V}=-$ (short-circuit protected)	
Alarm output			-	1 solid-state output, 0.5A, 24 V --., PNP
Signalling			LED (green/red/orange)	
Maximum switching frequency		Hz	3	
Activation delay		ms	100	
Discordance time		s	2	
HFT (Hardware Fault Tolerance)			1	
			Test interval: 12 months	
Tightening torque		Nm	1.8 max.	
Chaining in series			32 maximum with 2 m long cable	-
Functions				
Functions			- LED status signalling	- Auto/Manual start via "Start"input - Monitoring of external switching devices (EDM: External Device Monitoring) - Display of operating modes (LED) - Monitoring of the function (open or closed) as well as the response time of the power components.

[^8]References, characteristics

Safety detection solutions
Coded magnetic systems
Plastic, solid-state PNP type output
Type Magnetic system with dedicated transmitter

References				
Description	Type of connection	SIL 2/PL=d, category 3	SIL 3/PL=e, category 4	Weight kg
Coded magnetic system with dedicated transmitter (1)	Pre-cabled $\mathrm{L}=2 \mathrm{~m}$	XCS DM379102	XCS DM480102	0.320
	Pre-cabled, $\mathrm{L}=5 \mathrm{~m}$	XCS DM379105	XCS DM480105	0.480
	Pre-cabled, $\mathrm{L}=10 \mathrm{~m}$	XCS DM379110	XCS DM480110	0.745

(1) Self-contained system not requiring the use of a safety module or non-magnetic shim.

Detection characteristics

Assured operating distance	Sao: 10 mm
Assured tripping distance	Sar: 20 mm
Approach directions	9
Approach speed	$0.01 \mathrm{~m} / \mathrm{s} \mathrm{min}$.

Output status (pre-cabled connection)

Output states shown are with the dedicated transmitter positioned in front of the receiver

XCS DM3791••

Output closed Output open \square Transitional state

XCS DM4801••

Sao: Assured operating distance
Sar: Assured tripping distance
Conforming to EN/IEC 60947-5-3

Approach directions

Safety detection solutions

Coded magnetic systems
Plastic, solid-state PNP type output
Type

References				
Description	Type of connection	SIL 2/PL=d, category 3	SIL 3/PL=e, category 4	Weight kg
Magnetic system with dedicated transmitter (1)	M12 connector	XCS DM3791M12	XCS DM4801M12	0.215

(1) Self-contained system not requiring the use of a safety module or non-magnetic shim.

Detection characteristics

Assured operating distance	Sao: 10 mm
Assured tripping distance	Sar: 20 mm
Approach directions	9
Approach speed	$0.01 \mathrm{~m} / \mathrm{s} \mathrm{min}$.
Output status (M12 connector connection)	

Output states shown are with the dedicated transmitter positioned in front of the receiver

XCS DM3791M12
Output closed
Output open
Transitional state

XCS DM4801M12

"OFF" = Error
Sao: Assured operating distance
Sar: Assured tripping distance
Conforming to EN/IEC 60947-5-3

References, characteristics (continued)

Safety detection solutions

Coded magnetic systems
Accessories

Accessories				
	Description	For use with	Reference	Weight kg
	Replacement dedicated transmitter	XCS DM3/4•••02/05/10 XCS DM3/4•••M12	XCS DMT	0.100
	Arc suppressor (pair)	XCS DM3/4•••02/05/10 XCS DM3/4•••M12	XUS LZ500	0.020

Pre-wired female connectors for connector version coded magnetic systems
Pre-wired connector characteristics

Coded magnetic systems

Pre-cabled connection

XCS DM3/4•••02/05/10

Accessory

Replacement dedicated transmitter

XCS DMT

Pre-wired connectors
XZ CP29P12L.

Mounting XCS DM3/DM4

Schemes

Category 3 （this scheme can achieve SIL 2／PL＝d，category 3）

Pre－cabled connection

XCS DM3791••

SIL 3／PL＝e，category 4
Pre－cabled connection
XCS DM4801••

Chaining coded magnetic systems（2）
XCS DM3791••

M12 connector（A coding）connection
XCS DM3791M12

M12 connector（A coding）connection

XCS DM4801M12

Wiring to SIL $3 / P L=e$ ，category 4 with Preventa module
Example：XCS DM3・ゃゃゃ॰＋XPS AFL5130

（1）The K1 and K2 coils must be protected with arc suppressors．
（2）Maximum chaining： 32 maximum with 2 m long cable．
（3） 2 A max．
（4）Mechanically linked contacts．

Safety automation solutions
Preventa safety modules

For Emergency stop and switch monitoring

Unlimited
$\frac{\sim \text { and } 24 \mathrm{~V}=--/ 48 \mathrm{~V} \sim}{115 \mathrm{~V} \sim / 230 \mathrm{~V}}$
-

XPS AC

91

PL e/Category 4 conforming to EN/ISO 13849-1 SILCL 3 conforming to EN/IEC 62061

EN/IEC 60204-1, EN 1088/ISO 14119, EN/ISO 13850, EN/IEC 60947-1, EN/IEC 60947-5-1 UL, CSA, BG

3
1 relay output for signalling to PLC
2 LEDs
\sim and $24 \vee=-$

Unlimited
$24 \mathrm{~V}=-$
-
-

XPS AXE

91

PL e/Category 4 conforming to EN/ISO 13849-1, SILCL 3 conforming to EN/IEC 62061

EN/IEC 60204-1, EN 1088/ISO 14119, EN/ISO 13850,
EN/IEC 60947-1,
EN/IEC 60947-5-1
UL, CSA, TÜV

Unlimited
$24 \vee=-/-$
-
-

XPSAF

93

For Emergency stop, switch, sensing mat/edges or solid-state output safety light curtain monitoring

PL e/Category 4 conforming
to EN/ISO 13849-1
SILCL 3 conforming to EN/IEC 62061

EN/IEC 60204-1,
EN 1088/ISO 14119,
EN/ISO 13850,
EN/IEC 60947-1,
EN/IEC 60947-5-1
UL, CSA, TÜV

XPSAK

For Emergency stop, switch or solid-state output safety light curtain monitoring

PL e/Category 4 conforming to EN/ISO 13849-1, SILCL 3 conforming to EN/IEC 62061

EN/IEC 60204-1,
EN 1088/ISO 14119,
EN/ISO 13850,
EN/IEC 60947-1,
EN/IEC 60947-5-1
UL, CSA, TÜV

7
2 relay +4 solid-state
outputs for signalling
to PLC
4 LEDs
\sim and $24 \mathrm{~V}=-$
$115 \mathrm{~V} \sim$ and $24 \mathrm{~V}=-$
$230 \mathrm{~V} \sim$ and $24 \mathrm{~V}=-$

Unlimited
$24 \mathrm{~V}-=/-$
$24 \mathrm{~V} \sim / 24 \mathrm{~V}$
-

XPS AR

97

For zero speed detection of AC or DC motors which produce a remanent voltage in their windings due to residual magnetism

PL d/Category 3 conforming to EN/ISO 13849-1, SILCL 2 conforming to EN/IEC 62061

EN/IEC 60204-1,
EN/IEC 60947-1,
EN/IEC 60947-5-1
UL, CSA, TÜV

2
2 solid-state outputs for signalling to PLC
4 LEDs
$24 \mathrm{~V}=-$
$115 \mathrm{~V} \sim$
$230 \mathrm{~V} \sim$

\square
XPS VNE

99

For coded magnetic switch monitoring

For 2 max.
For 6 max.

PLe/Category 4 conforming
PLe/Category 4 conforming to EN/ISO 13849-1 SILCL 3 conforming to EN/IEC 62061

EN/IEC 60204-1,	EN/IEC 60204-1,
EN 1088/ISO 14119,	EN 1088/ISO 14119,
EN/IEC 60947-1,	EN/IEC 60947-1,
EN/IEC 60947-5-1,	EN/IEC 60947-5-1,
EN/IEC 60947-5-3	EN/IEC 60947-5-3
UL, CSA, TÜV	UL, CSA, TÜV

2	2
2 solid-state outputs for signalling to PLC	2 solid-state outputs for signalling to PLC
3 LEDs	15 LEDs
$24 \mathrm{~V}=-$	$24 \mathrm{~V}-\mathrm{-}$
-	-
	-
-	-
-	-

XPS DMB
XPS DME

101

Operating principle, characteristics

Safety automation solutions
 Preventa safety modules types XPS AC, XPS AXE
 For Emergency stop and switch monitoring

Operating principle

Safety modules XPS AC and XPS AXE are used for monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and EN/IEC 60204-1 and also meet the safety requirements for the electrical monitoring of switches in protection devices conforming to standard EN 1088/ISO 14119. They provide protection for both the machine operator and the machine by immediately stopping the dangerous movement on receipt of a stop instruction from the operator, or on detection of a fault in the safety circuit itself.
To aid diagnostics, the modules have LEDs which provide information on the monitoring circuit status.
The XPS AC module has 3 safety outputs and a solid-state output for signalling to the PLC.
The XPS AXE module has 3 safety outputs and a relay output for signalling to the PLC.
Characteristics

Module type			XPS AC, XPS AC・ゃ७๑P	
Maximum achievable safety level			PLe/Category 4 conforming to EN/ISO 13849-1, SILCL 3 conforming to EN/IEC 62061	PLe/Category 4 conforming to EN/ISO 13849-1 SILCL 3 conforming to EN/IEC 62061
Reliability data	Mean Time To dangerous Failure (MTTF ${ }_{\mathrm{d}}$)	Years	210.4	457
	Diagnostic Coverage (DC)	\%	> 99	>99
	Probability of dangerous Failure per Hour $\left(\mathrm{PFH}_{d}\right)$	1/h	3.56×10^{-9}	3×10^{-8}
Conformity to standards			```EN/IEC 60204-1, EN 1088/ISO 14119, EN/ISO 13850, EN/IEC 60947-1, EN/IEC 60947-5-1```	EN/IEC 60204-1, EN 1088/ISO 14119, EN/ISO 13850, EN/IEC 60947-1, EN/IEC 60947-5-1
Product certifications			UL, CSA, TÜV	UL, CSA, BG
Supply	Voltage	V	\sim and $24 \sim, 48 \sim, 115 \sim, 230 \sim$	\sim and 24 --
	Voltage limits		$\begin{aligned} & -20 \ldots+10 \%(24 \vee \sim) \\ & -20 \ldots+20 \%(24 \vee \underset{\sim}{\sim}) \\ & -15 \ldots+10 \%(48 \vee \sim) \\ & -15 \ldots+15 \%(115 \mathrm{~V}) \\ & -15 \ldots+10 \%(230 \mathrm{~V}) \end{aligned}$	-15...+10\%
	Frequency	Hz	50/60	50/60
Consumption		W	<1.2 (24V =--)	-
		VA	$\begin{aligned} & <2.5(24 \vee \sim) \\ & <6(48 \vee \sim) \\ & <7(115 \vee \sim) \\ & <6(230 \vee \sim) \end{aligned}$	< 4
Start button monitoring			No	No
Control unit voltage (at nominal supply voltage)			Identical to supply voltage	
	24 V version	V	$24 \sim$ (approx. 90 mA), 24 --. (approx. 40 mA)	24 ---
	48 V version	V	$48 \sim$ (approx. 100 mA)	-
	115 V version	V	$115 \sim$ (approx. 60 mA)	-
	230 V version	V	$230 \sim$ (approx. 25 mA)	-
Outputs	Voltage reference		Volt-free	Volt-free
	Number and type of safety circuits		3 NO (13-14, 23-24, 33-34)	3 NO (13-14, 23-24, 33-34)
	Number and type of additional circuits		1 solid-state	1 NC relay (41-42)
	Breaking capacity in AC-15	VA	C300: inrush 1800, maintained 180	B300
	Breaking capacity in DC-13		$24 \mathrm{~V} / 2 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$	$24 \mathrm{~V} / 1.5 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$
	Max. thermal current (lthe)	A	6	8
	Max. total thermal current	A	10.5	-
	Output fuse protection, using fuses conforming to IEC/EN 60947-5-1, DIN VDE 0660 part 200	A	$4 \mathrm{gG}(\mathrm{gl})$ or 6 fast acting	6 gG
	Minimum current	mA	10	10
	Minimum voltage	V	17	17
Electrical durability			Please refer to our catalogue "Safety functions and solutions using Preventa".	
Response time on input opening		ms	< 100	< 80
Rated insulation voltage (Ui)		V	300 (degree of pollution 2 conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
Rated impulse withstand voltage (Uimp)		kV	3 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	4 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)
LED display			2	2
Operating temperature		${ }^{\circ} \mathrm{C}$	-10... 55	$-25 . . .+55$
Storage temperature		${ }^{\circ} \mathrm{C}$	-25... +85	-25... 75
Degree of protection conforming to IEC/EN 60529	Terminals		IP 20	IP 20
	Enclosure		IP 40	IP 40

Characteristics (continued), references

Safety automation solutions
Preventa safety modules types XPS AC, XPS AXE
For Emergency stop and switch monitoring

Operating principle, characteristics

Safety automation solutions

Preventa safety modules type XPS AF For Emergency stop and switch monitoring

Operating principle
Safety modules XPS AF meet the requirements of Performance Level PLe/Category 4 conforming to standard EN/ISO 13849-1.

They are used for:
■ Monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and
EN/IEC 60204-1.
■ Electrical monitoring of switches activated by protection devices conforming to standard EN 1088.
Housed in a compact enclosure, the modules have 3 safety outputs.
Preventa safety modules XPS AF $\bullet \bullet \bullet$ P incorporate removable terminal blocks, thus optimising machine maintenance.
To aid diagnostics, the modules have 3 LEDs on the front face which provide information on the monitoring circuit status.
The Start button monitoring function is configurable depending on the wiring.

Characteristics					
Module type				XPS AF5130	XPS AF5130P
Maximum achievable safety level				PLe/Category 4 conforming to EN/ISO 13849-1, SILCL 3 conforming to EN/IEC 62061	
Reliability data	Mean Time To dangerous Failure ($\mathrm{MTTF}_{\mathrm{d}}$)		Years	243	
	Diagnostic Coverage (DC)		\%	> 99	
	Probability of dangerous Failure per Hour ($\mathrm{PFH}_{\mathrm{d}}$)		1/h	4.62×10^{-9}	
Conformity to standards				EN/IEC 60204-1, EN 1088/ISO 14119, EN/IEC 60947-5-1, EN/IEC 60947-1, EN/ISO 13850	
Product certifications				UL, CSA, TÜV	
Supply	Voltage		V	\sim and 24 ---	
	Voltage limits			-15...+10\%	
	Frequency		Hz	50/60	
Consumption			VA	$\leqslant 5$	
Module inputs fuse protection				Internal, electronic	
Start button monitoring				Yes/No (configurable by terminal connections)	
Control unit voltage and current Maximum wiring resistance RL				$24 \mathrm{~V}=-/ 30 \mathrm{~mA}$ approx. (at nominal supply voltage)	
			Ω	90	
Synchronisation time between inputs A and B				Unlimited	
Outputs	Voltage reference			Volt-free	
	Number and type of safety circuits			3 NO (13-14, 23-24, 33-34)	
	Breaking capacity in AC-15		VA	C300: inrush 1800, maintained 180	
	Breaking capacity in DC-13			$24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$	
	Max. thermal current (Ithe)		A	6	
	Max. total thermal current		A	18	
	Output fuse protection		A	4 gG or 6 fast acting, conforming to IEC/EN 60947-5-1, DIN VDE 0660 part 200	
	Minimum current		mA	10	
	Minimum voltage		V	17	
Electrical durability				Please refer to our catalogue "Safety functions and solutions using Preventa".	
Response time on input opening			ms	$\leqslant 40$	
Rated insulation voltage (Ui)			V	300 (degree of pollution 2 conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
Rated impulse withstand voltage (Uimp)			kV	4 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
LED display				3	
Operating temperature			${ }^{\circ} \mathrm{C}$	$-10 \ldots+55$	
Storage temperature			${ }^{\circ} \mathrm{C}$	-25... +85	
Degree of protection conforming to IEC/EN 60529		Terminals		IP 20	
		Enclosure		IP 40	
Connections	Type	Terminals		Captive screw clamp terminals	Captive screw clamp terminals
		Terminal block		Integrated in module	Removable from module
	1-wire connection	Without cable end		Solid or flexible cable: $0.14 . .2 .5 \mathrm{~mm}^{2}$	Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$	
		With cable end		With bezel, flexible cable: $0.25 . .1 .5 \mathrm{~mm}^{2}$	With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
	2-wire connection	Without cable end		Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$	Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$	
		With cable end		Double, with bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$	Double, with bezel, flexible cable: $0.5 . . .1 .5 \mathrm{~mm}^{2}$

References						
	Description	Type of terminal block connection	Number of safety circuits	Supply	Reference	Weight kg
	Safety modules for Emergency stop and switch monitoring	Integrated in module	3	\sim and 24 V -.	XPS AF5130	0.250
		Removable from module	3	\sim and 24 V --	XPS AF5130P	0.250
XPS AF5130						

Operating principle, characteristics

Safety automation solutions

Preventa safety modules type XPS AK
 For Emergency stop, switch, sensing mat/edges or safety light curtain monitoring

Operating principle
Safety modules XPS AK meet the requirements of Performance Level PL e/Category 4 conforming to standard EN/ISO 13849-1.
They are used for:
■ Monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and
EN 60204-1.
■ Electrical monitoring of switches activated by protection devices, with optional selection of synchronisation time between signals.
■ Monitoring 4 -wire sensing mats or edges.
■ Monitoring type 4 light curtains conforming to EN/IEC 61496-1 which have solidstate safety outputs with test function (light curtains XUS L).
Housed in a compact enclosure, the modules have 3 safety outputs, a relay signalling output and 4 solid-state signalling outputs for signalling to the process PLC.

Preventa safety modules XPS AKeee»P incorporate removable terminal blocks, thus optimising machine maintenance.
To aid diagnostics, the modules have 4 LEDs on the front face which provide information on the monitoring circuit status.
The Start button monitoring function is configurable depending on the wiring.

Characteristics					
Module type				XPS AK3•1144	XPS AK3•1144P
Maximum achievable safety level				PL e/Category 4 conforming to EN/ISO 13849-1, SILCL 3 conforming to EN/IEC 62061	
Reliability data	Mean Time To dangerous Failure ($\mathrm{MTTF}_{\mathrm{d}}$)		Years	154.5	
	Diagnostic Coverage (DC)		\%	> 99	
	Probability of dangerous Failure per Hour ($\mathrm{PFH}_{\mathrm{d}}$)		1/h	7.39×10^{-9}	
Conformity to standards				EN/IEC 60204-1, EN 1088/ISO 14119, EN/ISO 13850, EN/IEC 60947-1,EN/IEC 60947-5-1	
Product certifications				UL, CSA, TÜV	
Supply	Voltage		V	\sim and $24-$-, $48 \sim, 110 \sim$ and $24-$--, $120 \sim$ and $24-$ - $230 \sim$ and $24-\ldots$	
	Voltage limits			-15...+10\%	
	Frequency		Hz	50/60	
Consumption	24 V version		VA	$\leqslant 5$	
	110/120/230 V versions			$\leqslant 6$	
Module inputs fuse protection				Internal, electronic	
Start button monitoring				Yes/No (configurable by terminal connections)	
Control unit voltage and current between terminals S21-S22, S31-S32				$24 \mathrm{~V}=-/ 30 \mathrm{~mA}$ approx. (at nominal supply voltage)	
Maximum wiring resistance RL between terminals S21-S22, S31-S32			Ω	28	
Synchronisation time between inputs A and B (terminals S21-S22, S31-S32)			s	Automatic start: 2 or 4 depending on wiring Manual start (start button between S33 and S34): unlimited	
Outputs	Voltage reference			Volt-free	
	Number and type of safety circuits			3 NO (13-14, 23-24, 33-34)	
	Number and type of additional circuits			1 NC (41-42) + 4 solid-state	
	Breaking capacity in AC-15		VA	C300: inrush 1800, maintained 180	
	Breaking capacity in DC-13			$24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$	
	Breaking capacity of solid-state outputs			$24 \mathrm{~V} / 20 \mathrm{~mA}, 48 \mathrm{~V} / 10 \mathrm{~mA}$	
	Max. thermal current (Ithe)		A	6	
	Max. total thermal current		A	18	
	Output fuse protection		A	4 gG or 6 fast acting, conforming to IEC/EN 60947-5-1, DIN VDE 0660 part 200	
	Minimum current		mA	10	
	Minimum voltage		V	17	
Electrical durability				Please refer to our catalogue "Safety functions and solutions using Preventa".	
Response time on input opening			ms	≤ 40	
Rated insulation voltage (Ui)			V	300 (degree of pollution 2 conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
Rated impulse withstand voltage (Uimp)			kV	4 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
LED display				4	
Operating temperature			${ }^{\circ} \mathrm{C}$	$-10 \ldots+55$	
Storage temperature			${ }^{\circ} \mathrm{C}$	-25... 85	
Degree of protection	Conforming to IEC 60529	Terminals		IP 20	
		Enclosure		IP 40	

Characteristics, references

Safety automation solutions

Preventa safety modules type XPS AK For Emergency stop, switch, sensing mat/edges or safety light curtain monitoring

Operating principle, characteristics

Safety automation solutions

Preventa safety modules type XPS AR For Emergency stop, switch or safety light curtain monitoring

Operating principle
Safety modules XPS AR meet the requirements of Performance Level PL e/ Category 4 conforming to standard EN/ISO 13849-1 and are designed for the following safety applications:

- Monitoring Emergency stop circuits conforming to EN/ISO 13850 and

EN/IEC 60204-1.

- Electrical monitoring of switches activated by protection devices conforming
to standard EN 1088/ISO 14119.
- Monitoring type 4 light curtains conforming to EN/IEC 61496-1 that have solidstate safety outputs with test function (light curtains XUS L).
In addition to 7 safety outputs, modules XPS AR incorporate 2 relay signalling outputs and 4 solid-state signalling outputs for signalling to the process PLC.

Safety modules XPS AR•・ヤ७๑P incorporate removable terminal blocks, thus optimising machine maintenance.
To aid diagnostics, the modules have 4 LEDs on the front face which provide information on the monitoring circuit status.
The Start button monitoring function is configurable depending on the wiring.

Characteristics, references

Safety automation solutions
Preventa safety modules type XPS AR For Emergency stop, switch or safety light curtain monitoring

Characteristics (continued)								
Module type			XPS AR3•1144			XPS AR3•1144P		
Connection	Type	Terminals	Captive screw clamp terminals			Captive screw clamp terminals		
		Terminal block	Integrated in module			Removable from module		
	1-wire connection	Without cable end	Solid or flexible cable: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$			Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$		
		With cable end	Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$					
		With cable end	With bezel, flexible cable: $0.25 \ldots 1.5 \mathrm{~mm}^{2}$			With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$		
	2-wire connection	Without cable end	Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$			Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable:$0.2 \ldots 1.5 \mathrm{~mm}^{2}$		
		With cable end	Without bezel, flexible cable: $0.25 \ldots 1 \mathrm{~mm}^{2}$					
		With cable end	Double, with bezel, flexible cable: $0.5 . .1 .5 \mathrm{~mm}^{2}$					
References								
		Description	Type of terminal block connection	Number of safety circuits	Additional outputs/ solid-state outputs to PLC	Supply	Reference	Weight
						V		kg
		Safety modules for Emergency stop, switch or safety light curtain monitoring	Integrated in module	7	$2 / 4$	$\begin{aligned} & 24 ~ \\ & 24 \simeq \end{aligned}$	XPS AR311144	0.300

XPS AR3•1144
$\overline{115 \text { ~ XPS AR351144 } 0.400}$ $24-$

$230 \sim$	XPS AR371144	0.400
$24--$		

Removable	7	$2 / 4$	$24 \sim$	XPS AR311144P	0.300
from module			$24-\ldots$		

115~ XPS AR351144P 0.400
230 ~ XPS AR371144P 0.400

Operating principle characteristics

Safety automation solutions

Preventa safety modules type XPS VNE For zero speed detection

Operating principle

Preventa safety modules XPS VNE for zero speed detection are used to detect the stop condition of electric motors. Their most common applications include: providing the unlock signal for electrically interlocked sliding or removable machine guards, controlling rotation direction signals for reversing motors and engaging locking brakes after a motor has come to a standstill.

As electric motors run down, a remanent voltage is produced in the windings of the motor due to residual magnetism. This voltage is proportional to the speed of the motor and, therefore, decreases as the motor comes to a standstill.
This remanent voltage is measured in a redundant manner so as to detect the stop condition of the motor. The cabling between the motor windings and the inputs of the XPS VNE module is also monitored to prevent a cabling breakage or fault being seen as a stopped motor.
A transformer should not be used to connect the motor to terminals $\mathrm{Z} 1, \mathrm{Z} 2$ and Z 3 since there is no monitoring of the connection with the motor winding via the resistance monitoring.

Modules XPS VNE are suitable for detecting the stop condition of all types of AC or DC motor driven machines which, when the motor runs down, produce a remanent voltage in the windings due to residual magnetism. These machines can be controlled by electronic devices, such as variable speed drives or $D C$ injection brakes.
The input filters for standard XPS VNE modules are designed for a frequency of up to 60 Hz .
For motors operating at a frequency higher than 60 Hz , which therefore produce a high frequency remanent voltage, special modules XPS VNE $\bullet \bullet \bullet \bullet H S$ should be used.

Modules XPS VNE have 2 potentiometers mounted on the front face of the module which allow independent adjustment of the switching threshold for each input circuit. This allows adjustment for different types of motors and application requirements.

To aid diagnostics, modules XPS VNE have 4 LEDs and 2 solid-state outputs to provide information on the status of the zero speed detection circuit.

Characteristics			
Module type			XPS VNE
Maximum achievable safety level			PL d/Category 3 conforming to EN/ISO 13849-1, SILCL 2 conforming to EN/IEC 62061
Reliability data	Mean Time To dangerous Failure ($\mathrm{MTTF}_{\mathrm{d}}$)	Years	124.1
	Diagnostic Coverage (DC)	\%	>99
	Probability of dangerous Failure per Hour ($\mathrm{PFH}_{\mathrm{d}}$)	1/h	9.26×10^{-9}
Conformity to standards			EN/IEC 60204-1, EN/IEC 60947-1 EN/IEC 60947-5-1
Product certifications			UL, CSA, TÜV
Supply	Voltage	V	$\begin{aligned} & 24=- \\ & 115 \sim \\ & 230 \sim \end{aligned}$
	Voltage limits		$\begin{aligned} & -15 \ldots+10 \%(24 \vee \sim) \\ & -15 \ldots+15 \%(115 \vee \sim) \\ & -15 \ldots+10 \%(230 \vee \sim) \\ & \hline \end{aligned}$
	Frequency	Hz	$50 / 60$ (115 V, 230 V)
Consumption		W	$\leqslant 3.5$ (24 V $=-$.
		VA	$\leqslant 7.5$ (115 V ~), $\leqslant 7$ ($230 \mathrm{~V} \sim)$
Frequency of motor power supply		Hz	$\leqslant 60 \mathrm{~Hz}$ (XPS VN・ャ42), > 60 Hz (XPS VN•॰42HS)
Inputs	Maximum voltage between terminals $\mathrm{Z} 1-\mathrm{Z2}-\mathrm{Z3}$	V	500 rms
	Detection threshold	V	0.01-0.1 (adjustable)

Characteristics, references

Safety automation solutions

Preventa safety modules type XPS VNE
 For zero speed detection

Characteristics (continued)

Module type				XPS VNE
Outputs	Voltage reference			Volt-free
	Number and type of safety circuits			1 NO (13-14), 1 NC (21-22)
	Number and type of additional circuits			2 solid-state
	Breaking capacity in AC-15			C300 (inrush: $1800 \mathrm{VA} /$ maintained: 180 VA)
	Breaking capacity in DC-13			$\begin{aligned} & 24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms} \text { (contact 13-14) } \\ & 24 \mathrm{~V} / 1.2 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms} \text { (contact } 21-22 \text {) } \end{aligned}$
	Breaking capacity of solid-state outputs			$24 \mathrm{~V} / 20 \mathrm{~mA}, 48 \mathrm{~V} / 10 \mathrm{~mA}$
	Max. thermal current (Ithe)		A	2.5
	Output fuse protection		A	4 gG, conforming to IEC/EN 60947-5-1, DIN VDE 0660 part 200
	Minimum current (volt-free contact)		mA	10 (1)
	Minimum voltage (volt-free contact)		V	17 (1)
Electrical durability				Please refer to our catalogue "Safety functions and solutions using Preventa".
Rated insulation voltage (Ui)			V	300 (degree of pollution 2 conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)
Rated impulse withstand voltage (Uimp)			kV	4 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)
LED display				4
Operating temperature			${ }^{\circ} \mathrm{C}$	-10... +55
Storage temperature			${ }^{\circ} \mathrm{C}$	-25...+85
Degree of protection Conforming to EN/IEC 60529		Terminals		IP 20
		Enclosure		IP 40
Connection	Type	Terminals		Captive screw clamp
		Terminal block		Removable from module
	1-wire connection	Without cable end		Solid or flexible cable: $0.2 . . .2 .5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, solid or flexible cable: $0.25 . .2 .5 \mathrm{~mm}^{2}$
				With bezel, solid or flexible cable: $0.25 . .2 .5 \mathrm{~mm}^{2}$
	2-wire connection	Without cable end		Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 . . .1 .5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$
				With bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$

(1) The module is also capable of switching low power loads ($17 \mathrm{~V} / 10 \mathrm{~mA}$) provided that the contact has not been used for switching high power loads (possible contamination or wear of the gold layer on the contact tips).

References							
	Description	Number of safety circuits	Solid-state outputs for PLC	Supply	Frequency of motor power supply	Reference	Weight kg
	Safety modules for zero speed detection	2	2	$24 \mathrm{~V}=-$	$\leqslant 60 \mathrm{~Hz}$	XPS VNE1142P	0.500
					$>60 \mathrm{~Hz}$	XPS VNE1142HSP	0.500
				115 V	$\leqslant 60 \mathrm{~Hz}$	XPS VNE3442P	0.600
7194					$>60 \mathrm{~Hz}$	XPS VNE3442HSP	0.600
V				$230 \mathrm{~V} \sim$	$\leqslant 60 \mathrm{~Hz}$	XPS VNE3742P	0.600
					$>60 \mathrm{~Hz}$	XPS VNE3742HSP	0.600

Operating principle， characteristics

Safety automation solutions

Preventa safety modules types XPS DMB， XPS DME

For coded magnetic switch monitoring

Safety modules XPS DMB and XPS DME are specifically designed for monitoring coded magnetic safety switches．They incorporate two safety outputs and two solid－state outputs for signalling to the process PLC．Conforming to Performance Level PL e／Category 4 conforming to EN／ISO 13849－1，modules XPS DMB can monitor two independent sensors and modules XPS DME can monitor up to six independent sensors．

To monitor a higher number of magnetic switches using these safety modules， the magnetic switches can be connected in series parallel，while meeting the requirements of Performance Level PL d／Category 3 conforming to standard EN／ISO 13849－1．

Safety modules XPS DM・ゃゃゃ・P incorporate removable terminal blocks，thus optimising machine maintenance．
To aid diagnostics，the modules have LEDs on the front face which provide information on the monitoring circuit status．

Characteristics							
Module type				XPS DMB1132	XPS DMB1132P	XPS DME1132	XPS DME1132P
Maximum achievable safety level				PLe／Category 4 conforming to EN／ISO 13849－1，SILCL 3 conforming to EN／IEC 62061			
Reliability data	Mean Time To dangerous Failure（ $\mathrm{MTTF}_{\text {d }}$ ）		Years	83.1		82.4	
	Diagnostic Coverage（DC）		\％	＞ 99		＞ 99	
	Probability of dangerous Failure per Hour （ $\mathrm{PFH}_{\mathrm{d}}$ ）		1／h	3.92×10^{-9}		3.97×10^{-9}	
Conformity to standards				EN／IEC 60204－1，EN 1088／ISO 14119，EN／IEC 60947－1，EN／IEC 60947－5－1，EN／IEC 60947－5－3			
Product certifications				UL，CSA，TÜV			
Supply（Ue） conforming to IEC 60038	Voltage		V	24 －－－			
	Voltage limits 24 V			－20．．．$+20 \%$			
Consumption			W	＜2．5		＜3．5	
Module inputs fuse protection				Internal，electronic			
Maximum wiring resistance RL between the module and the coded magnetic switches			Ω	100			
Control unit voltage and current				$28 \mathrm{~V} / 8 \mathrm{~mA}$			
Synchronisation time between magnetic switch inputs			s	＜0．5			
Safety outputs	Voltage reference			Volt－free			
	Number and type of safety circuits			2 NO			
	Number and type of solid－state outputs			2			
	Breaking capacity in AC－15		VA	C300：inrush 1800，maintained： 180			
	Breaking capacity in DC－13			$24 \mathrm{~V} / 1.5 \mathrm{~A}, \mathrm{~L} / \mathrm{R}=50 \mathrm{~ms}$			
	Max．thermal current（lthe）		A	6			
	Max．total thermal current		A	12			
	Output fuse protection		A	4 gG or 6 fast acting			
	Minimum current		mA	10			
	Minimum voltage		V	17			
Electrical durability				Please refer to our catalogue＂Safety functions and solutions using Preventa＂．			
Response time on input opening			ms	＜20			
Rated insulation voltage（Ui）			V	300 （degree of pollution 2 conforming to IEC／EN 60947－5－1，DIN VDE 0110 parts 1 \＆2）			
Rated impulse withstand voltage（Uimp）			kV	4 （overvoltage category III，conforming to IEC／EN 60947－5－1，DIN VDE 0110 parts 1 \＆2）			
LED display				3		15	
Ambient air temperature	For operation		${ }^{\circ} \mathrm{C}$	－10．．．+55			
	For storage		${ }^{\circ} \mathrm{C}$	－25．．．+85			
Degree of protection conforming to EN／IEC 60529				Terminals：IP 20，enclosure：IP 40			
Connection	Type	Terminals		Captive screw clamp terminals			
		Terminal block		Integrated in module	Removable from module	Integrated in module	Removable from module
	1－wire connection	Without cable end		Solid or flexible cable：0．14．．． $2.5 \mathrm{~mm}^{2}$	Solid or flexible cable： $0.2 \ldots 2.5 \mathrm{~mm}^{2}$	Solid or flexible cable： $0.14 \ldots 2.5 \mathrm{~mm}^{2}$	Solid or flexible cable： $0.14 \ldots 2.5 \mathrm{~mm}^{2}$
		With cable end		Without bezel，flexible cable： $0.25 \ldots 2.5 \mathrm{~mm}^{2}$			
		With cable end		With bezel，flexible cable： 0.25 ．．． $1.5 \mathrm{~mm}^{2}$	With bezel，flexible cable： $0.25 . . .2 .5 \mathrm{~mm}^{2}$	With bezel，flexible cable： $0.25 \ldots . .1 .5 \mathrm{~mm}^{2}$	With bezel，flexible cable： $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
	2－wire connection	Without cable end		Solid or flexible cable： $0.14 \ldots 0.75 \mathrm{~mm}^{2}$	Solid cable： 0．2．．． $1 \mathrm{~mm}^{2}$ ，flexible cable： $0.2 \ldots 1.5 \mathrm{~mm}^{2}$	Solid or flexible cable： $0.14 \ldots . .0 .75 \mathrm{~mm}^{2}$	Solid cable： 0．2．．． $1 \mathrm{~mm}^{2}$ ，flexible cable： $0.2 \ldots 1.5 \mathrm{~mm}^{2}$
		With cable end		Without bezel，flexible cable： $0.25 . .1 \mathrm{~mm}^{2}$			
		With cable end		With bezel，flexible cable： $0.5 \ldots 1.5 \mathrm{~mm}^{2}$			

Safety automation solutions

Preventa safety modules types XPS DMB, XPS DME
For coded magnetic switch monitoring

XPS DMB1132

References						
Description	Type of terminal block connection	Number of safety circuits	Solid-state outputs for PLC	Supply	Reference	Weight
				V		kg
Safety module for monitoring 2 coded	Integrated in module	2 NO	2	24 --	XPS DMB1132	0.250

Safety module for monitoring 6 coded magnetic switches	Integrated in module	2 NO	2	$24--$	XPS DME1132	0.300

Safety module for monitoring 2 coded magnetic switches	Removable from module	2 NO	2	$24 \ldots$	XPS DMB1132P	0.250

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein.

Design: Schneider Electric
Photos: Schneider Electric
Printed by:

[^0]: (1) 1 entry tapped for $n^{\circ} 11$ cable gland
 (2) 1 entry tapped for $1 / 2^{\prime \prime}$ NPT conduit
 \varnothing : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres
 2 holes $\varnothing 4.3$ on 20 centres

[^1]: Locking of actuator and operation in positive mode associated with a safety module.

[^2]: Locking of actuator and operation in positive mode associated with a safety module.

[^3]: A : Available $4^{\text {th }}$ quarter 2011.

[^4]: Ø: 2 elongated holes $\varnothing 6.2 \times 4.2$
 (1) 3 tapped entries for cable gland.
 (2) Version with M23 connector.

[^5]: (1) Using an appropriate and correctly connected control system.

[^6]: (1) With start button monitoring.

[^7]: (1) With start button monitoring.

[^8]: (1) Using an appropriate and correctly connected control system

